Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunol ; 207(4): 1078-1086, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34341172

RESUMEN

Emergency granulopoiesis, also known as demand-adapted granulopoiesis, is defined as the response of an organism to systemic bacterial infections, and it results in neutrophil mobilization from reservoir pools and increased myelopoiesis in the bone marrow. Indirect and direct initiating mechanisms of emergency granulopoiesis have been hypothesized. However, the detailed mechanism of hyperactive myelopoiesis in the bone marrow, which leads to granulocyte left shift, remains unknown. In this study, we report that TLR4 is expressed on granulo-monocytic progenitors, as well as mobilized human peripheral blood CD34+ cells, which account for 0.2% of monocytes in peripheral blood, and ∼ 10% in bone marrow. LPS, a component of Gram-negative bacteria that results in a systemic bacterial infection, induces the differentiation of peripheral blood CD34+ cells into myelocytes and monocytes in vitro via the TLR4 signaling pathway. Moreover, CD34+ cells directly responded to LPS stimulation by activating the MAPK and NF-κB signaling pathways, and they produced IL-6 that promotes emergency granulopoiesis by phosphorylating C/EBPα and C/EBPß, and this effect was suppressed by the action of an IL-6 receptor inhibitor. This work supports the finding that TLR is expressed on human hematopoietic stem and progenitor cells, and it provides evidence that human hematopoietic stem and progenitor cells can directly sense pathogens and produce cytokines exerting autocrine and/or paracrine effects, thereby promoting differentiation.


Asunto(s)
Granulocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Interleucina-6/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Receptor Toll-Like 4/metabolismo , Adaptación Fisiológica/fisiología , Antígenos CD34/metabolismo , Médula Ósea/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/fisiología , Citocinas/metabolismo , Regulación de la Expresión Génica/fisiología , Células Precursoras de Granulocitos/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Monocitos/metabolismo , Mielopoyesis/fisiología
2.
Sci Rep ; 10(1): 11806, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678227

RESUMEN

The molecular mechanisms involved in the terminal differentiation of erythroblasts have been elucidated by comparing enucleation and cell division. Although various similarities and differences between erythroblast enucleation and cytokinesis have been reported, the mechanisms that control enucleation remain unclear. We previously reported that dynein and microtubule-organizing centers mediated the polarization of nuclei in human erythroblasts. Moreover, the accumulation of F-actin was noted during the enucleation of erythroblasts. Therefore, during enucleation, upstream effectors in the signal transduction pathway regulating dynein or actin, such as cell division control protein 42 homolog (Cdc42), may be crucial. We herein investigated the effects of the Cdc42 inhibitor, CASIN, on cytokinesis and enucleation in colony-forming units-erythroid (CFU-Es) and mature erythroblasts (day 10). CASIN blocked the proliferation of CFU-Es and their enucleation in a dose-dependent manner. Dynein adopted an island-like distribution in the cytoplasm of non-treated CFU-Es, but was concentrated near the nucleus as a dot and co-localized with γ-tubulin in CASIN-treated cells. CASIN blocked the accumulation of F-actin in CFU-Es and day 10 cells. These results demonstrated that Cdc42 plays an important role in cytokinesis, nuclear polarization and nuclear extrusion through a relationship with dynein and actin filament organization during the terminal differentiation of erythroblasts.


Asunto(s)
Actomiosina/metabolismo , Diferenciación Celular , Eritroblastos/citología , Eritroblastos/metabolismo , Proteína de Unión al GTP cdc42/genética , Biomarcadores , Diferenciación Celular/genética , Núcleo Celular/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Inmunohistoquímica , Proteína de Unión al GTP cdc42/metabolismo
3.
Exp Hematol ; 72: 14-26.e1, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30797950

RESUMEN

More than 2million human erythroblasts extrude their nuclei every second in bone marrow under hypoxic conditions (<7% O2). Enucleation requires specific signal transduction pathways and the local assembly of contractile actomyosin rings. However, the energy source driving these events has not yet been identified. We examined whether different O2 environments (hypoxic [5% O2] and normoxic [21% O2] conditions) affected human CD34+ cell erythroblast differentiation. We also investigated the regulatory mechanisms underlying energy production in erythroblasts during terminal differentiation under 5% or 21% O2 conditions. The results obtained revealed that the enucleation ratio and intracellular levels of adenosine triphosphate (ATP), lactate dehydrogenase (LDH) M3H, and hypoxia-inducible factor 1α in erythroblasts during terminal differentiation were higher under the 5% O2 condition than under the 21% O2 condition. We also found that the enzymatic inhibition of glyceraldehyde 3-phosphate dehydrogenase and LDH, key enzymes in anaerobic glycolysis, blocked the proliferation of colony-forming units-erythroid and enucleation of erythroblasts, and also reduced ATP levels in erythroblasts under both hypoxic and normoxic conditions. Under both conditions, phosphorylation of the Ser232, Ser293, and Ser300 residues in pyruvate dehydrogenase (inactive state of the enzyme) in erythroblasts was involved in regulating the pathway governing energy metabolism during erythroid terminal differentiation. This reaction may be mediated by pyruvate dehydrogenase kinase (PDK) 4, the major PDK isozyme expressed in erythroblasts undergoing enucleation. Collectively, these results suggest that ATP produced by anaerobic glycolysis is the main source of energy for human erythroblast enucleation in the hypoxic bone marrow environment.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Eritroblastos/metabolismo , Glucólisis/fisiología , Anaerobiosis/fisiología , Antígenos CD34/metabolismo , Eritroblastos/citología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Fosforilación/fisiología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
4.
Exp Hematol ; 44(4): 247-56.e12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26724640

RESUMEN

Mammalian erythroblasts undergo enucleation through a process thought to be similar to cytokinesis. Microtubule-organizing centers (MTOCs) mediate organization of the mitotic spindle apparatus that separates the chromosomes during mitosis and are known to be crucial for proper cytokinesis. However, the role of MTOCs in erythroblast enucleation remains unknown. We therefore investigated the effect of various MTOC inhibitors on cytokinesis and enucleation using human colony-forming units-erythroid (CFU-Es) and mature erythroblasts generated from purified CD34(+) cells. We found that erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA), a dynein inhibitor, and monastrol, a kinesin Eg5 inhibitor, as well as various inhibitors of MTOC regulators, including ON-01910 (Plk-1), MLN8237 (aurora A), hesperadin (aurora B), and LY294002 (PI3K), all inhibited CFU-E cytokinesis. Among these inhibitors, however, only EHNA blocked enucleation. Moreover, terminally differentiated erythroblasts expressed only dynein; little or none of the other tested proteins was detected. Over the course of the terminal differentiation of human erythroblasts, the fraction of cells with nuclei at the cell center declined, whereas the fraction of polarized cells, with nuclei shifted to a position near the plasma membrane, increased. Dynein inhibition impaired nuclear polarization, thereby blocking enucleation. These data indicate that dynein plays an essential role not only in cytokinesis but also in enucleation. We therefore conclude that human erythroblast enucleation is a process largely independent of MTOCs, but dependent on dynein.


Asunto(s)
Diferenciación Celular , Dineínas/metabolismo , Eritroblastos/citología , Eritroblastos/metabolismo , División Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dineínas/antagonistas & inhibidores , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Eritropoyesis , Expresión Génica , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Centro Organizador de los Microtúbulos/metabolismo , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Sulfonas/farmacología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Cancer Discov ; 5(7): 730-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25883023

RESUMEN

UNLABELLED: Inositol polyphosphate 4-phosphatase B (INPP4B) has been identified as a tumor suppressor mutated in human breast, ovary, and prostate cancers. The molecular mechanism underlying INPP4B's tumor-suppressive role is currently unknown. Here, we demonstrate that INPP4B restrains tumor development by dephosphorylating the PtdIns(3,4,5)P3 that accumulates in situations of PTEN deficiency. In vitro, INPP4B directly dephosphorylates PtdIns(3,4,5)P3. In vivo, neither inactivation of Inpp4b (Inpp4b(Δ/Δ)) nor heterozygous deletion of Pten (Pten(+/-)) in mice causes thyroid abnormalities, but a combination of these mutations induces malignant thyroid cancers with lung metastases. At the molecular level, simultaneous deletion of Inpp4b and Pten synergistically increases PtdIns(3,4,5)P3 levels and activates AKT downstream signaling proteins in thyroid cells. We propose that the PtdIns(3,4,5)P3 phosphatase activity of INPP4B can function as a "back-up" mechanism when PTEN is deficient, making INPP4B a potential novel therapeutic target for PTEN-deficient or PIK3CA-activated cancers. SIGNIFICANCE: Although INPP4B expression is reduced in several types of human cancers, our work on Inpp4B-deficient mice provides the first evidence that INPP4B is a bona fide tumor suppressor whose function is particularly important in situations of PTEN deficiency. Our biochemical data demonstrate that INPP4B directly dephosphorylates PtdIns(3,4,5)P3.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Fosfohidrolasa PTEN/deficiencia , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Ratones , Células Madre Embrionarias de Ratones , Monoéster Fosfórico Hidrolasas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología
6.
Biochem J ; 464(3): 365-75, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25269936

RESUMEN

Phosphoinositide 5'-phosphatases have been implicated in the regulation of phagocytosis. However, their precise roles in the phagocytic process are poorly understood. We prepared RAW264.7 macrophages deficient in Inpp5e (shInpp5e) to clarify the role of this lipid phosphatase. In the shInpp5e cells, the uptake of solid particles was increased and the rate of phagosome acidification was accelerated. As expected, levels of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 were increased and decreased respectively, on the forming phagocytic cups of these cells. Unexpectedly, the most prominent consequence of the Inpp5e deficiency was the decreased accumulation of PtdIns3P and Rab5 on the phagosome. The expression of a constitutively active form of Rab5b in the shInpp5e cells rescued the PtdIns3P accumulation. Rab20 has been reported to regulate the activity of Rabex5, a guanine nucleotide exchange factor for Rab5. The association of Rab20 with the phagosome was remarkably abrogated in the shInpp5e cells. Over-expression of Rab20 increased phagosomal PtdIns3P accumulation and delayed its elimination. These results suggest that Inpp5e, through functional interactions with Rab20 on the phagosome, activates Rab5, which, in turn, increases PtdIns3P and delays phagosome acidification.


Asunto(s)
Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Ácidos/metabolismo , Animales , Células Cultivadas , Macrófagos/metabolismo , Ratones , Fagocitosis/genética , Unión Proteica , Transfección
7.
J Biol Chem ; 288(4): 2325-39, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23192342

RESUMEN

The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3'-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110ß, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2ß, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P(1-3). We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P(1) in ECs. Knockdown of either PI3K-C2α or class I p110ß markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110ß was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110ß were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110ß markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110ß suppressed S1P-induced S1P(1) internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P(1) internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P(1) internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/fisiología , Regulación Enzimológica de la Expresión Génica , Receptores de Lisoesfingolípidos/genética , Movimiento Celular , Células Cultivadas , Fosfatidilinositol 3-Quinasas Clase II/genética , Endocitosis , Endosomas/metabolismo , Células Endoteliales/citología , Transferencia Resonante de Energía de Fluorescencia , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisofosfolípidos/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Transfección , Proteínas de Unión al GTP rac/metabolismo
8.
Nat Med ; 18(10): 1560-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22983395

RESUMEN

The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network and clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell-specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate-enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly. PI3K-C2α knockdown also impaired endothelial cell signaling, including vascular endothelial growth factor receptor internalization and endosomal RhoA activation. Together, the effects of PI3K-C2α knockdown led to defective endothelial cell migration, proliferation, tube formation and barrier integrity. Endothelial PI3K-C2α deficiency in vivo suppressed postischemic and tumor angiogenesis and diminished vascular barrier function with a greatly augmented susceptibility to anaphylaxis and a higher incidence of dissecting aortic aneurysm formation in response to angiotensin II infusion. Thus, PI3K-C2α has a crucial role in vascular formation and barrier integrity and represents a new therapeutic target for vascular disease.


Asunto(s)
Barrera Alveolocapilar/metabolismo , Neovascularización Fisiológica , Fosfatidilinositol 3-Quinasas/metabolismo , Angiotensina II/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular/genética , Proliferación Celular , Células Cultivadas , Vesículas Cubiertas por Clatrina/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Red trans-Golgi/metabolismo
9.
Nature ; 465(7297): 497-501, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20463662

RESUMEN

Phosphorylated derivatives of phosphatidylinositol, collectively referred to as phosphoinositides, occur in the cytoplasmic leaflet of cellular membranes and regulate activities such as vesicle transport, cytoskeletal reorganization and signal transduction. Recent studies have indicated an important role for phosphoinositide metabolism in the aetiology of diseases such as cancer, diabetes, myopathy and inflammation. Although the biological functions of the phosphatases that regulate phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) have been well characterized, little is known about the functions of the phosphatases regulating the closely related molecule phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)). Here we show that inositol polyphosphate phosphatase 4A (INPP4A), a PtdIns(3,4)P(2) phosphatase, is a suppressor of glutamate excitotoxicity in the central nervous system. Targeted disruption of the Inpp4a gene in mice leads to neurodegeneration in the striatum, the input nucleus of the basal ganglia that has a central role in motor and cognitive behaviours. Notably, Inpp4a(-/-) mice show severe involuntary movement disorders. In vitro, Inpp4a gene silencing via short hairpin RNA renders cultured primary striatal neurons vulnerable to cell death mediated by N-methyl-d-aspartate-type glutamate receptors (NMDARs). Mechanistically, INPP4A is found at the postsynaptic density and regulates synaptic NMDAR localization and NMDAR-mediated excitatory postsynaptic current. Thus, INPP4A protects neurons from excitotoxic cell death and thereby maintains the functional integrity of the brain. Our study demonstrates that PtdIns(3,4)P(2), PtdIns(3,4,5)P(3) and the phosphatases acting on them can have distinct regulatory roles, and provides insight into the unique aspects and physiological significance of PtdIns(3,4)P(2) metabolism. INPP4A represents, to our knowledge, the first signalling protein with a function in neurons to suppress excitotoxic cell death. The discovery of a direct link between PtdIns(3,4)P(2) metabolism and the regulation of neurodegeneration and involuntary movements may aid the development of new approaches for the treatment of neurodegenerative disorders.


Asunto(s)
Ácido Glutámico/toxicidad , Neuronas/citología , Neuronas/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Regulación hacia Abajo , Discinesias/genética , Discinesias/patología , Discinesias/fisiopatología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Neostriado/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/enzimología , Neuronas/patología , Monoéster Fosfórico Hidrolasas/deficiencia , Monoéster Fosfórico Hidrolasas/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Tasa de Supervivencia , Sinapsis/metabolismo , Pérdida de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA