Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21755, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294306

RESUMEN

Leukemia is a type of blood tumour that occurs because of abnormal enhancement in WBCs (white blood cells) in the bone marrow of the human body. Blood-forming tissue cancer influences the lymphatic and bone marrow system. The early diagnosis and detection of leukaemia, i.e., the accurate difference of malignant leukocytes with little expense at the beginning of the disease, is a primary challenge in the disease analysis field. Despite the higher occurrence of leukemia, there is a lack of flow cytometry tools, and the procedures accessible at medical diagnostics centres are time-consuming. Distinct researchers have implemented computer-aided diagnostic (CAD) and machine learning (ML) methods for laboratory image analysis, aiming to manage the restrictions of late leukemia analysis. This study proposes a new Falcon optimization algorithm with deep convolutional neural network for Leukemia detection and classification (FOADCNN-LDC) technique. The main objective of the FOADCNN-LDC technique is to classify and recognize leukemia. The FOADCNN-LDC technique utilizes a median filtering (MF) based noise removal process to eradicate the image noise. Besides, the FOADCNN-LDC technique employs the ShuffleNetv2 model for the feature extraction process. Moreover, the detection and classification of the leukemia process are performed by utilizing the convolutional denoising autoencoder (CDAE) model. The FOA is implemented to select the hyperparameter of the CDAE model. The simulation process of the FOADCNN-LDC approach is performed on a benchmark medical dataset. The investigational analysis of the FOADCNN-LDC approach highlighted a superior accuracy value of 99.62% over existing techniques.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Diagnóstico por Computador , Leucemia , Humanos , Leucemia/diagnóstico , Leucemia/clasificación , Leucemia/patología , Diagnóstico por Computador/métodos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
2.
Biomed Pharmacother ; 178: 117128, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079259

RESUMEN

Cardiovascular diseases (CVD) cause significant global morbidity, mortality and public health burden annually. CVD alters richness, diversity, and composition of Gut microbiota along with RAS and histopathological differences. Present study explores Metformin role in mitigating doxorubicin induced cardiovascular toxicity/remodeling. Animals were divided into 4 groups with n=6: Group I (N. Control) free access to diet and water; Group II (MET. Control) on oral Metformin (250 mg/kg) daily; Group III (DOX. Control) alternate day intraperitoneal Doxorubicin (3 mg/kg) totaling 18 mg/kg; Group IV (DOX. MET. Control) received both daily oral Metformin (250 mg/kg) and alternate day Doxorubicin (3 mg/kg). Gut microbial analysis was made from stool before animals were sacrificed for biochemical and histopathological analysis. Significant alterations were observed in ɑ and ß-diversity with new genus from Firmicutes, specifically Clostridia_UCG-014, Eubacterium ruminantium, and Tunicibacter, were prevalent in both the DOX. Control and DOX.MET groups. Proteobacteria, represented by Succinivibrio, were absent in all groups. Additionally, Parabacteroides from the Bacteroidia phylum was absent in all groups except the N. control. In the DOX.MET Control group, levels of Angiotensin II ( 7.75± 0.49 nmol/min, p<0.01) and Renin (2.60±0.26 ng/ml/hr) were significantly reduced. Conversely, levels of CK-MB, Fibrinogen, Troponin, CRP ( p < 0.0001), and TNFɑ (p < 0.05) were elevated. Histopathological examination revealed substantial cardiac changes, including Fibrinogen and fat deposition and eosinophilic infiltration, as well as liver damage characterized by binucleated cells and damaged hepatocytes, along with altered renal tissues in the DOX.MET.Control group. The findings suggest that MET. significantly modifies gut microbiota, particularly impacting the Firmicutes and Proteobacteria phyla. The reduction in Angiotensin II levels, alongside increased inflammatory markers and myocardial damage, highlights the complex interactions and potential adverse effects associated with MET therapy on cardiovascular health.


Asunto(s)
Microbioma Gastrointestinal , Metformina , Microbioma Gastrointestinal/efectos de los fármacos , Metformina/farmacología , Animales , Masculino , Doxorrubicina , Enfermedades Cardiovasculares/inducido químicamente , Ratas , Bacterias/efectos de los fármacos , Bacterias/clasificación , Heces/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38956913

RESUMEN

BACKGROUND: Gliomas are the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. MATERIALS AND METHODS: We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, we tried to prove the potential association between glioma and specific blood group antigens. RESULTS: 78 patients were found, among whom the maximum percentage with glioblastoma had blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and the least with O-. Liquid biopsy biomarkers included Alanine Aminotransferase (ALT), Lactate Dehydrogenase (LDH), lymphocytes, Urea, Alkaline phosphatase (AST), Neutrophils, and C-Reactive Protein (CRP). The levels of all the components increased significantly with the severity of the glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II, respectively. CONCLUSION: Gliomas have significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. A liquid biopsy is a non-invasive approach that aids in setting up the status of the patient and figuring out the tumor grade; therefore, it may show diagnostic and prognostic utility. Additionally, our study provides evidence to prove the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and confirm their clinical usefulness to guide treatment approaches.

.

4.
Curr Med Chem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39021174

RESUMEN

BACKGROUND: Clinical endocrinology has observed emerging endocrine complications following COVID-19 vaccination, amidst successful reductions in COVID-19 hospitalizations and deaths. The Pfizer-BioNTech and Moderna mRNA vaccines have demonstrated efficacy. Reports indicate a potential association between SARS-CoV-2 vaccination and diabetes, exploring interactions with ACE-2 receptors and molecular mimicry. Additionally, altered liver and kidney function tests post-vaccination prompt investigation into their role in predicting type 2 diabetes. This study aims to explore these biochemical abnormalities in a case-control, single-centre prospective study. MATERIALS AND METHODS: This prospective study aimed to evaluate a total of five hundred healthy donors, out of which 203 qualified for final analysis. Participants were selected based on their vaccination status with a COVID-19 vaccine and prior exposure to the SARS-CoV-2 virus. Donors without prior SARS-CoV-2 infection were excluded from the study. Included participants were adults who had received three doses of the COVID-19 vaccine. RESULTS: A total of 203 individuals were included in the study, comprising 104 with type 2 diabetes mellitus (T2DM) and 99 without. Demographic characteristics including age, sex, nationality, Rh factors, ABO blood groups, liver function tests (LFT), kidney function tests (KFT), lactate dehydrogenase (LDH), and mineral ion levels were analysed. Among the participants, the distribution based on HbA1c levels showed 47.8% with HbA1c <7% classified as normal, 38.48% with HbA1c 8-10% classified as high, and 16.64% with HbA1c <10% classified as uncontrolled diabetes. Significant findings included a decrease in magnesium levels to 0.77±0.82 mmol/L (p<0.04*), an increase in LDH levels to 420.70±356.26 µL (p<0.01*), and elevated levels of alkaline phosphatase (143.22 ± 142.62 µL, p<0.001), gamma-glutamyl transferase (GGT) (55.70 ± 32.20 µL, p<0.001), and serum bilirubin (9.23 ± 4.87 µmol/L, p<0.001). Creatinine levels were significantly lower at 116.75 ± 101.94 µmol/L (p#60;0.001), while uric acid levels were significantly elevated at 305.92 ± 145.04 µmol/L (p<0.001) in individuals with uncontrolled HbA1c <10%. A majority of these individuals belonged to the O+ blood group. CONCLUSION: This study underscores significant shifts in serum biomarkers and their complex interplay with mRNA-based SARS-CoV-2 vaccination and diabetes, particularly in uncontrolled cases. The findings suggest potential autoimmune reactions triggered by the self-adjuvant properties of mRNA and polyethylene glycol lipid conjugates. Variations observed among different blood groups may correspond to racial disparities influencing molecular mimicry mechanisms. Despite these insights, the underlying pathophysiological mechanisms remain unclear, highlighting the critical need for further research to validate and expand upon these findings.

5.
RSC Adv ; 14(33): 23785-23795, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39077323

RESUMEN

In both premenopausal and postmenopausal women, oestrogens play a critical role in the development of breast cancer. Aromatase is an enzyme that catalyses the final step in the biosynthesis of estrogen and has emerged as a promising target for therapeutic intervention. This study aimed to design and evaluate novel 1-(4-(benzamido)phenyl)-3-arylurea derivatives as potential aromatase inhibitors. Through molecular docking, promising leads were identified and synthesized. Spectroscopic techniques confirmed their structural integrity. Cytotoxicity against various cancer cell lines was assessed using MTT assay. Docking investigations against the aromatase enzyme (3s7s) elucidated binding interactions and energies. Compound 6g, exhibiting a binding energy of -8.6 kcal mol-1 and interacting with ALA306 and THR310 residues, showed the most promising activity. It demonstrated GI50 values ranging from 14.46 µM, 13.97 µM, 11.35 µM, 11.58 µM, and 15.77 µM against A-498, NCI-H23, MDAMB-231, MCF-7, and A-549 respectively. Lastly, the physicochemical, and ADMET properties of the compound were predicted. These findings highlight the potential of 1-(4-(benzamido)phenyl)-3-arylureas as a new class of antitumor agents targeting aromatase. Their versatility and superior activity compared to standard chemotherapeutic agents, like doxorubicin, warrant further investigation for the development of broader-spectrum anticancer drugs.

6.
Curr Pharm Des ; 30(14): 1115-1127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38561612

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) continue to exert a substantial global influence in specific areas due to population growth, aging, microbiota, and genetic/environmental factors. Drinking water has a strong impact on the health of an individual. Further, emerging evidence has highlighted the therapeutic potential and benefits of Zamzam water (Zam). OBJECTIVE: We investigated the influence of Zam on doxorubicin-induced cardiac toxicity, elucidating its consequential effects on GUT microbiota dysbiosis and hepatic and renal functions. METHODS: Male rats were categorized into four groups: Group 1 as Normal control (NC), Group 2 as Zamzam control (ZC), Group 3 Disease control (DC) and Group 4 as Therapeutic control (DZ) treated with Zam against doxorubicin-induced disease at a dose of 1mg/kg boy weight) intraperitoneally (i.p). RESULTS: Significant dysbiosis in the composition of GM was observed in the DC group along with a significant decrease (p < 0.05) in serum levels of Zinc, interleukin-10 (IL-10), IL-6 and Angiotensin II (Ang II), while C-reactive protein (CRP), fibrinogen, and CKMB increased significantly (restoration of Zinc ions (0.72 ± 0.07 mcg/mL) compared to NC. Treatment with Zamzam exhibited a marked abundance of 18-times to 72% in Romboutsia, a genus of firmicutes, along with lowering of Proteobacteria in DZ followed by significant restoration of Zinc ions (0.72 ± 0.07 mcg/mL), significant (p ˂ 0.05) reduction in CRP (7.22 ± 0.39 mg/dL), CKMB (118.8 ± 1.02 U/L) and Fibrinogen (3.18 ± 0.16 mg/dL), significant (p < 0.05) increase in IL-10 (7.22 ± 0.84 pg/mL) and IL-6 (7.18 ± 0.40 pg/ml), restoration of Ang II (18.62 ± 0.50 nmol/mL/min), marked increase in renin with normal myocyte architecture and tissue orientation of kidney, and restoration of histological architecture of hepatocyte. CONCLUSION: Zam treatment mitigated cardiac toxicity risk through the modulation of GUT microbiota and the renin-angiotensin system and tissue histology effectively.


Asunto(s)
Microbioma Gastrointestinal , Sistema Renina-Angiotensina , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Doxorrubicina/farmacología , Agua/química
7.
Curr Diabetes Rev ; 20(9): e110124225520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415496

RESUMEN

BACKGROUND: Much increasing evidence has suggested that long-term complications post vaccination of SARS-CoV-2 experience a wide range of complication including diabetes. The risk and burden of type 1 diabetes is extensively reported, but type 2 diabetes mellitus (T2D) has yet to be characterized. To address this gap, we aimed to examine trends of long-term complications post SARS-CoV-2 infection and vaccination in diabetes incidence among the Saudi population. METHODS: In this cross-sectional hospital-based study, we analyzed the blood profile of first-time blood donors from the University Hospital of King Abdulaziz University, Jeddah. Saudi Arabia. Various blood parameters, HbA1c was measured in the month of May 2023. All the donors were non-diabetic and were never diagnosed with T2D before the current blood donation. 203 healthy subjects donated their blood, out of which 104 had abnormally high HbA1c tending towards diagnosis of T2D and 99 had with blood profiles. The study followed the STROBE reporting guidelines. RESULTS: Out of 203 donors 104 (male 50(48.1%), female 54(51.9%)) were diagnosed with increased HbA1c (8.24 in males) compared to 7.61 of HbA1c in females. 35.6% were above ˃65 years, with 52.9% with O+ from the ABO blood group. Liver functions indicated significant p˂0.05, 0.04, increased amount of GGT (46.47 U/L), Alkaline phosphatase (99.93 ±64.26 uL) respectively in HbA1c elevated donors KFT represented significant p˂0.05, 0.02 elevated levels of urea (6.73 ±5.51 mmol/L), creatinine (129.97 ±195.17 umol/L) respectively along with elevated values of Lactate dehydrogenase (LDH) (263.72± 196.70 uL) and triglycerides (1.66 ±0.74mmol/L) when compared to normal value of HbA1c donors. DISCUSSION: In the present cross-sectional study, significant increase in HbA1c, trending towards increased cases of T2D post SARS-CoV-2 infection and vaccination. Males are much affected compared to females. Further maximum number of cases were from donors above the age of 65 years with altered partial LFT (GGT, Alkaline phosphatase), KFT (urea, creatinine), lipid profile (TG) and LDH in post SARS-CoV-2 and vaccination blood donors. CONCLUSION: Increase in HbA1c in 50% of donors, irrespective of gender, is an alarming figure for health authorities, with altered LFT, KFT and LDH tests and, in the near future, may increase the incidence of T2D. Large-scale population-based studies are required to prevent future incidences of T2D in young children who will be vaccinated.


Asunto(s)
Donantes de Sangre , Vacunas contra la COVID-19 , COVID-19 , Diabetes Mellitus Tipo 2 , Hemoglobina Glucada , SARS-CoV-2 , Humanos , Masculino , Femenino , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/sangre , Donantes de Sangre/estadística & datos numéricos , Arabia Saudita/epidemiología , Adulto , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Hemoglobina Glucada/análisis , Persona de Mediana Edad , Vacunación/estadística & datos numéricos , Adulto Joven
8.
Cancers (Basel) ; 15(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444410

RESUMEN

An early diagnosis of lung and colon cancer (LCC) is critical for improved patient outcomes and effective treatment. Histopathological image (HSI) analysis has emerged as a robust tool for cancer diagnosis. HSI analysis for a LCC diagnosis includes the analysis and examination of tissue samples attained from the LCC to recognize lesions or cancerous cells. It has a significant role in the staging and diagnosis of this tumor, which aids in the prognosis and treatment planning, but a manual analysis of the image is subject to human error and is also time-consuming. Therefore, a computer-aided approach is needed for the detection of LCC using HSI. Transfer learning (TL) leverages pretrained deep learning (DL) algorithms that have been trained on a larger dataset for extracting related features from the HIS, which are then used for training a classifier for a tumor diagnosis. This manuscript offers the design of the Al-Biruni Earth Radius Optimization with Transfer Learning-based Histopathological Image Analysis for Lung and Colon Cancer Detection (BERTL-HIALCCD) technique. The purpose of the study is to detect LCC effectually in histopathological images. To execute this, the BERTL-HIALCCD method follows the concepts of computer vision (CV) and transfer learning for accurate LCC detection. When using the BERTL-HIALCCD technique, an improved ShuffleNet model is applied for the feature extraction process, and its hyperparameters are chosen by the BER system. For the effectual recognition of LCC, a deep convolutional recurrent neural network (DCRNN) model is applied. Finally, the coati optimization algorithm (COA) is exploited for the parameter choice of the DCRNN approach. For examining the efficacy of the BERTL-HIALCCD technique, a comprehensive group of experiments was conducted on a large dataset of histopathological images. The experimental outcomes demonstrate that the combination of AER and COA algorithms attain an improved performance in cancer detection over the compared models.

9.
Curr Med Chem ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37303172

RESUMEN

BACKGROUND: Fungal mycotoxins are the secondary metabolite and are harmful to plants, animals, and humans. Common aflatoxins present and isolated from feeds and food comprises aflatoxins B1, B2, G1, and G2. Public health threats or risk of foodborne disease posed by mycotoxins, especially the export or import of such meat products are of primary concern. This study aims to determine the concentration of the level of aflatoxins B1, B2, G1, G2 M1, and M2 respectively in imported burger meat. METHOD: The present work is designed to select and collect the various sample of meat products from different sources and subjected to mycotoxin analysis by LCMS/MS. Random selection was made on sites of burger meat that was for sale. RESULTS: Simultaneous presence of several mycotoxins in the same sample of imported meat under the set conditions of LCMS/MS detected 26% (18 samples) were positive for various mycotoxins. The most frequent mycotoxins proportion in the analyzed samples was aflatoxin B1 (50%) followed by aflatoxin G1 (44%), aflatoxin G2 (38.8%), aflatoxin B2 (33%) respectively were least among all with 16.66 and 11.11%. DISCUSSION: A positive correlation is deduced between CVD and mycotoxin present in burger meat. Isolated mycotoxins initiate death receptor-mediated apoptosis, death receptor-mediated necrosis, mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, and immunogenic cell deaths through various pathways that can damage the cardiac tissues. CONCLUSION: The presence of these toxins in such samples is just the tip of the iceberg. Further investigation is necessary for complete clarifications of toxins on human health especially on CVD and other related metabolic complications.

10.
Int J Nanomedicine ; 18: 2737-2756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250469

RESUMEN

Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.


Asunto(s)
Enfermedad de Alzheimer , Glioblastoma , Glioma , Nanopartículas , Humanos , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Nanomedicina , Glioma/tratamiento farmacológico , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/uso terapéutico
11.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232989

RESUMEN

Brain metastasis is one of the major reasons of death in breast cancer (BC) patients, significantly affecting the quality of life, physical activity, and interdependence on several individuals. There is no clear evidence in scientific literature that depicts an exact mechanism relating to brain metastasis in BC patients. The tendency to develop breast cancer brain metastases (BCBMs) differs by the BC subtype, varying from almost half with triple-negative breast cancer (TNBC) (HER2- ER- PR-), one-third with HER2+ (human epidermal growth factor receptor 2-positive, and around one-tenth with luminal subclass (ER+ (estrogen positive) or PR+ (progesterone positive)) breast cancer. This review focuses on the molecular pathways as possible therapeutic targets of BCBMs and their potent drugs under different stages of clinical trial. In view of increased numbers of clinical trials and systemic studies, the scientific community is hopeful of unraveling the underlying mechanisms of BCBMs that will help in designing an effective treatment regimen with multiple molecular targets.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Estrógenos , Femenino , Humanos , Progesterona , Calidad de Vida , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
12.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616087

RESUMEN

Innovative drug delivery systems based on iron oxide nanoparticles (INPs) has generated a lot of interest worldwide and have prime biomedical benefits in anticancer therapy. There are still issues reported regarding the stability, absorption, and toxicity of iron oxide nanoparticles (INPs) when administered due to its rapid surface oxidation and agglomeration with blood proteins. To solve this problem, we have synthesized trehalose-coated stabilized iron oxide nanoparticles (TINPs) by a co-precipitation technique. The surface coating of INPs with trehalose helps to improve the stability, prevents protein binding, and increase absorption uptake inside the body. Developed TINPs was then loaded with anticancer drug cytarabine by chemical crosslinking encapsulation method using suitable solvent. Engineered cytarabine-loaded trehalose-coated stabilized iron oxide nanoparticles (CY-TINPs) were optimized for particle size, zeta potential (-13.03 mV), and solid-state characterization such as differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and transmission electron microscope (TEM) studies. The particle size of 50 nm was achieved for developed CY-TINPs. The developed CY-TINPs was further evaluated for in vitro cell line investigations which confirmed potential cytotoxic activity. Developed CY-TINPs show remarkable enhancement in in vivo pharmacokinetic parameters Cmax as 425.26 ± 2.11 and AUC0-72 as 11,546.64 ± 139.82 as compared to pure drug. Compared to traditional drug delivery, the CY-TINPs formulation can effectively delay release, improve bioavailability, and boost cytotoxic activity against tumors.

13.
Biomed Pharmacother ; 134: 111156, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33401080

RESUMEN

Cardiac disorders contribute to one of the major causes of fatality across the world. Hypertensive patients, even well maintained on drugs, possess a high risk to cardiovascular diseases. It is, therefore, highly important to identify different factors and pathways that lead to risk and progression of cardiovascular disorders. Several animals and human studies suggest that taxonomical alterations in the gut are involved in the cardiovascular physiology. In this article, with the help of various experimental evidences, we suggest that the host gut-microbiota plays an important in this pathway. Short chain fatty acids (SCFAs) and Trimethyl Amine -n-Oxide (TMAO) are the two major products of gut microbiome. SCFAs present a crucial role in regulating the blood pressure, while TMAO is involved in pathogenesis of atherosclerosis and other coronary artery diseases, including hypertension. We prove that there exists a triangular bridge connecting the gap between dietary salt, hypertension and gut microbiome. We also present some of the dietary interventions which can regulate and control microbiota that can prevent cardiovascular complications.We strongly believe that this article would improve the understanding the role of gut microbiota in hypertension, and will be helpful in the development of novel therapeutic strategies for prevention of hypertension through restoring gut microbiome homeostasis in the near future.


Asunto(s)
Bacterias/metabolismo , Presión Sanguínea , Microbioma Gastrointestinal , Hipertensión/etiología , Intestinos/microbiología , Cloruro de Sodio Dietético/efectos adversos , Animales , Dieta Saludable , Dieta Hiposódica , Fibras de la Dieta/uso terapéutico , Suplementos Dietéticos , Disbiosis , Ácidos Grasos Volátiles/metabolismo , Humanos , Hipertensión/dietoterapia , Hipertensión/microbiología , Hipertensión/fisiopatología , Metilaminas/metabolismo , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA