Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(4): 5331-5343, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38114695

RESUMEN

The removal of copper (Cu) in soils by green technology is less treated with urgency, as it is a plant micronutrient. We examined the efficiency of Cu shoot accumulation by herbaceous plants in Cu-contaminated and non-contaminated soils in Trhové Dusniky and Podles, respectively, in the Czech Republic. The total soil Cu content of 81 mg kg-1 in Trhové Dusniky indicated a slight contamination level compared to 50 mg kg-1, the permissible value by WHO, and < 35 in Podlesí, representing a clean environment. The Cu content was above the permissible value in plants (10 mg kg-1 by WHO) in herbaceous speciesat the control site without trees: Stachys palustris L. (10.8 mg kg-1), Cirsium arvense L. (11.3 mg kg-1), Achillea millefolium L. (12.1 mg kg-1), Anthemis arvense L. (13.2 mg kg-1), and Calamagrostis epigejos L. (13.7 mg kg-1). In addition, Hypericum maculatum Crantz (10.6 mg kg-1), Campanula patula L. (11.3 mg kg-1), C. arvense (15 mg kg-1), and the highest accumulation in shoot of Equisetum arvense L. (37.1 mg kg-1), all under the canopy of trees at the uncontaminated site, were above the WHO value. Leucanthemum Vulgare (Lam.) and Plantago lanceolata L. recorded 11.2 mg kg-1 and 11.5 mg kg-1, respectively, in the soil of the Cu-contaminated site. These herbaceous species can support the phyto-management of Cu-contaminated soils, especially E. arvense. Critical attention is well-required in the medicinal application of herbaceous plants in treating human ailments due to their Cu accumulation potentials above the threshold. Spontaneous surveys and analysis of Cu speciation in herbaceous species can reveal suitable plants to decontaminate soils and provide caution on consumable products, especially bioactive compounds.


Asunto(s)
Contaminantes del Suelo , Oligoelementos , Humanos , Cobre/análisis , Contaminantes del Suelo/análisis , Plantas , Oligoelementos/análisis , Suelo , Árboles , Biodegradación Ambiental
2.
Environ Sci Pollut Res Int ; 30(5): 11378-11398, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529801

RESUMEN

The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Antioxidantes , Biodegradación Ambiental , Cadmio/metabolismo , Plomo , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-33593243

RESUMEN

The initial cyanide (CN-) concentration and amount of co-contaminants in GCTs can inhibit bacterial growth and reduce the CN--degrading ability of bacteria. Several microorganisms can biotransform a wide range of organic and inorganic industrial contaminants into nontoxic compounds. However, active enzymatic CN- metabolism processes are mostly constrained by the physical and chemical characteristics of GCTs. High concentrations of toxic metal co-contaminants, such as, Pb, and Cr, and factors, such as pH, temperature, and oxygen concentration create oxidative stress and limit the CN--degrading potential of cyanotrophic strains. The effects of such external and internal factors on the CN--degrading ability of bacteria hinder the selection of suitable microorganisms for CN- biodegradation. Therefore, understanding the effects of the physicochemical properties of GCTs on cyanobacteria strains can help identify suitable microbes and favorable environmental conditions to promote microbial growth and can also help design efficient CN- biodegradation processes. In this review, we present a detailed analysis of the physicochemical properties of GCTs and their effects on microbial CN- degradation.


Asunto(s)
Cianuros/toxicidad , Cianobacterias/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Oro/toxicidad , Biodegradación Ambiental/efectos de los fármacos , Cianuros/química , Cianuros/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Oro/química , Oro/metabolismo , Residuos Industriales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...