Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174837, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029764

RESUMEN

Mangrove ecosystems represent low-cost climate-regulating systems through carbon storage in their sediments. However, considering the complex shifts in shallow coastal ecosystems, it is clear from just a few sets of environmental impacts on their carbon storage that there is a deficit in the information required for preserving this service. Here, we investigated the spatial and temporal variability of hydrographic factors (water temperature, pH, salinity, dissolved oxygen (DO), flow velocity, turbidity) and sediment characteristics (sedimentation rate and sediment grain size) on the intricate carbon dynamics of mangroves by examining which key variable(s) control mangrove sediment organic matter (OM). We used in-situ monitoring to assess the hydrographic dynamics, sedimentation rate, sediment organic content, and granulometry. Laboratory loss-on-ignition and granulometric methods were employed to quantify OM in trapped and bottom sediments and sediment grain size, respectively. Based on the findings, water pH, salinity, and DO were the key regulators of OM in sediments. Despite conventional expectations, the study observed positive effects of DO on OM, highlighting the possible role of aquatic plant photosynthesis and freshwater inflow. Sedimentation rates, usually considered crucial for OM accumulation, showed no significant relationship, emphasizing the importance of sediment content over quantity. Noteworthy findings include the role of sediment grain size in OM storage within mangrove sediments. Even though the grain size class of 63 µm diameter had the highest mean weight across the studied sites, there were significant positive correlations between Trap and Bottom OM with 500 and 2000 µm grain size classes, emphasizing the need to consider sediment characteristics in carbon dynamics assessments. Overall, this research provides valuable insights into the intricate environmental dynamics of mangrove ecosystems that are crucial to understanding and managing these vital coastal habitats.

2.
Mar Pollut Bull ; 202: 116351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640765

RESUMEN

Coastal urbanisation has ramifications for the sustainable development of developing nations. There are often unquantified ecological and health risks associated with urbanisation. Sixteen polycyclic aromatic hydrocarbons (PAHs) were analysed in surface sediment from three peri-urban coastal lagoons in southern Ghana. We found significant spatial variations of sediment PAHs. These variations were attributed to physiography of the lagoons and diverse anthropogenic activities surrounding them. Total PAHs ranged from 20.81 to 24,801.38 µg/kg (dry weight), underscoring a low to very high pollution level. Diagnostic ratios revealed both pyrogenic and petrogenic origins. Over 50 % of individual PAHs were of moderate ecological risk to benthic organisms, and cancer risk to humans was above the World Health Organisation's recommended safety limit (1 × 10-6). These ecological and health risks should be wake-up call for a more integrated urban planning approach to coastal urbanisation as coastal communities largely depend on natural ecosystems for food and livelihood opportunities.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Sedimentos Geológicos/química , Ghana , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Humanos , Ecotoxicología , Ecosistema , Urbanización
3.
Heliyon ; 10(7): e28018, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596140

RESUMEN

Increasing human activities in coastal areas of Ghana have led to the degradation of many surface waterbodies, with significant consequences for the ecosystems in the affected areas. Thus, this degradation extremely affects the health of ecosystems and disrupts the essential services they provide. The present study explored the use of benthic macroinvertebrates as an indicator of estuarine degradation along the coast of Ghana. Water and sediment samples were collected bimonthly from Ankobra, Kakum and Volta estuaries for physicochemical parameters, nutrients and benthic macroinvertebrates. The findings revealed the dominance of pollution-tolerant taxa such as Capitella sp., Nereis sp., Heteromastus sp., Tubifex sp., Cossura sp. and Chironomous sp. in Kakum Estuary while pollution-sensitive taxa such as Scoloplos sp., Euridice sp., Lumbriconereis sp. and Pachymelania sp. in the Volta Estuary. The species-environment interactions showed dissolved oxygen, temperature, salinity, orthophosphate, nitrates, ammonium, electrical conductivity, turbidity, and chemical oxygen demand as the most significant parameters that complement the use of benthic macroinvertebrates as indicators of environmental quality in the studied estuaries. There were correlations of some benthic macroinvertebrate taxa with environmental factors in the estuaries suggesting low, moderate and high levels of pollution in the Volta, Kakum and Ankobra estuaries, respectively. Nevertheless, the study finds Kakum Estuary to be the ecologically healthiest estuary than the Volta and Ankobra Estuaries. Therefore, the study has shown benthic macroinvertebrates as a key indicator of ecosystem health alterations, and it is recommended that they should be incorporated with other environmental data for pollution monitoring in Ghanaian coastal waters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA