Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biomedicines ; 11(9)2023 Aug 24.
Article En | MEDLINE | ID: mdl-37760813

Pistacia lentiscus L. has traditionally been employed as a diuretic and stimulant in the treatment of hypertension. Our interest centered on analyzing the chemical profile of the plant's leaves and its in vitro, in vivo, and in silico antioxidant, antimicrobial, anticoagulant, and antidiabetic effects in order to valorize this species and prepare new high-value products that can be used in the agro-food and pharmaceutical industries. When this species' essential oil was hydrodistilled and subjected to GC-MS analysis, the results showed that the principal components were germacrene D (17.54%), spathulenol (17.38%), bicyclogermacrene (12.52%), and terpinen-4-ol (9.95%). The extraction of phenolic compounds was carried out by decoction and Soxhlet. The determination of total polyphenols, flavonoids, and tannins of aqueous and organic extracts by spectrophotometric methods demonstrated the richness of this species in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of the aqueous extract of P. lentiscus revealed the presence of 3,5-di-O-galloyl quinic acid, gallic acid, and 3,4,5-tri-O-galloyl quinic acid specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and Total Antioxidant Capacity) revealed that P. lentiscus is a very promising source of natural antioxidants. The antimicrobial activity of the essential oil and aqueous extract (E0) was studied by microdilution on the microplate. The results revealed the effectiveness of the aqueous extract compared to the essential oil against Gram-negative bacteria (K. pneumoniae, A. baumannii, E. aerogenes, E. cloacae, P. fluorescence, Salmonella sp., Shigella sp., and Y. enterolitica) and candidoses (C. krusei and C. albicans). The measurements of prothrombin time (PT) and activated partial thromboplastin time (aPTT) of the aqueous extract (E0) can significantly prolong these tests from concentrations of 2.875 and 5.750 mg/mL, respectively. The antihyperglycemic effect of the aqueous extract (E0) showed a strong in vitro inhibitory activity of α-amylase and α-glucosidase compared to acarbose. Thus, it significantly inhibited postprandial hyperglycemia in Wistar albino rats. The in-silico study of the major compounds of the essential oil and extract (E0) carried out using PASS, SwissADME, pkCSM, and molecular docking tools confirmed our in vitro and in vivo results. The studied compounds showed a strong ability to be absorbed by the gastrointestinal tract and to passively diffuse through the blood-brain barrier, a similarity to drugs, and water solubility. Molecular docking experiments deduced the probable mode of action of the identified compounds on their respective target proteins, such as NADPH oxidase, thrombin, α-amylase, and α-glucosidase. Furthermore, given the demonstrated antioxidant, antimicrobial, anticoagulant, and antidiabetic effects, we can affirm the richness of P. lentiscus in bioactive molecules and its use in traditional medicine as a source of preservative agent.

2.
Front Chem ; 11: 1238346, 2023.
Article En | MEDLINE | ID: mdl-37663139

Aqueous extracts of Marrubium vulgare L. (M. vulgare) are widely used in traditional medicine for their therapeutic effects. Hence, this study aims to evaluate in vitro, in vivo, and in silico the biological activities of M. vulgare aqueous extract to further support their traditional use. Qualitative phytochemical tests of M. vulgare extracts showed the presence of primary and secondary metabolites, while quantitative analyses recorded revealed the contents of total phenols, flavonoids, and tannins, with values of 488.432 ± 7.825 mg/EAG gallic acid extract/g, 25.5326 ± 1.317 mg/EQ Quercetin extract/g and 23.966 ± 0.187 mg/EC catechin extract/g, respectively. Characterization of the phytochemical constituents of the extract revealed the presence of catechin and maleic acid as the most abundant while the evaluation of the antioxidant power revealed that the extract possesses significant antioxidant capacity, antimitotic potential, and antimicrobial properties against Streptococcus agalactiae and Staphylococcus epidermidis among many others. The antidiabetic activity of the extract showed a potent antihyperglycemic effect and a significant modulation of the pancreatic α-amylase activity as revealed by both in vitro and in vivo analysis, while an in silico evaluation showed that chemicals in the studied extract exhibited the aforementioned activities by targeting 1XO2 antimitotic protein, W93 antidiabetic protein and 1AJ6 antimicrobial protein, which revealed them as worthy of exploration in drug discovery odyssey. Conclusively, the result of this study demonstrates the numerous biological activities of M. vulgare and gives credence to their folkloric and traditional usage.

...