Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
bioRxiv ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38464254

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and understanding how they are arranged is key to understanding how kinetochores perform their multiple functions. However, an integrated understanding of kinetochore architecture has not yet been established. To address this, we purified functional, native kinetochores from Kluyveromyces marxianus and examined them by electron microscopy, cryo-electron tomography and atomic force microscopy. The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies, and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

2.
Elife ; 122023 Dec 27.
Article En | MEDLINE | ID: mdl-38150374

During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.


Kinetochores , Spindle Apparatus , Spindle Apparatus/metabolism , Microtubules/metabolism , Mitosis , Chromosome Segregation
3.
bioRxiv ; 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37905093

During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.

4.
EMBO J ; 42(17): e114534, 2023 09 04.
Article En | MEDLINE | ID: mdl-37469281

Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.


Chromosomal Proteins, Non-Histone , Nucleosomes , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Autoantigens/genetics , Autoantigens/metabolism , Centromere/genetics , Centromere/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
bioRxiv ; 2023 May 17.
Article En | MEDLINE | ID: mdl-36711558

Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.

6.
EMBO J ; 42(8): e112600, 2023 04 17.
Article En | MEDLINE | ID: mdl-36651597

Forcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here, we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes that are defined by their centromeric evolutionary origins but that these aneuploidies are not adaptive. Instead, we find that a set of missense mutations in outer kinetochore proteins drives adaptation to human histones. Furthermore, we characterize the molecular mechanism underlying adaptation in two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. We propose a model through which weakened microtubule attachments promote increased kinetochore-microtubule turnover and thus suppress chromosome instability. In sum, our data show how a set of point mutations evolved in histone-humanized yeasts to counterbalance human histone-induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.


Kinetochores , Saccharomyces cerevisiae Proteins , Humans , Kinetochores/metabolism , Histones/genetics , Histones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Cell Cycle Proteins/metabolism , Microtubules/metabolism , Chromosome Segregation/genetics , Ploidies , Aneuploidy
7.
Elife ; 112022 12 29.
Article En | MEDLINE | ID: mdl-36580070

The disassembly of microtubules can generate force and drive intracellular motility. During mitosis, for example, chromosomes remain persistently attached via kinetochores to the tips of disassembling microtubules, which pull the sister chromatids apart. According to the conformational wave hypothesis, such force generation requires that protofilaments curl outward from the disassembling tips to exert pulling force directly on kinetochores. Rigorously testing this idea will require modifying the mechanical and energetic properties of curling protofilaments, but no way to do so has yet been described. Here, by direct measurement of working strokes generated in vitro by curling protofilaments, we show that their mechanical energy output can be increased by adding magnesium, and that yeast microtubules generate larger and more energetic working strokes than bovine microtubules. Both the magnesium and species-dependent increases in work output can be explained by lengthening the protofilament curls, without any change in their bending stiffness or intrinsic curvature. These observations demonstrate how work output from curling protofilaments can be tuned and suggest evolutionary conservation of the amount of curvature strain energy stored in the microtubule lattice.


Dividing cells duplicate their genetic information to create identical pairs of chromosomes, which then need to be equally distributed to the two future daughter cells. In preparation, each chromosome in a pair is pulled towards its final location by hollow tubes of proteins known as microtubules. To create this tugging force, the microtubule acts like a winch: the extremity attached to the chromosome gradually shortens by losing its building blocks. However, it is not clear how the microtubule can keep its grip on the chromosome while also 'falling apart' in this way. A possible explanation could stem from the way that microtubules are built, and from how they fall apart. Each tube is composed of rows of building blocks, called 'protofilaments'. As the microtubule shortens, the protofilaments first curl outwards before crumbling apart; this creates a curling action that could 'hook' the chromosome and pull on it as the microtubule shortens. This theory remains difficult to test however, in part because scientists lack ways to alter the properties of curling protofilaments in order to dissect how they work. Murray et al. aimed to fill that gap by using a technique they have previously developed, and which allows them to capture how much force curling protofilaments can apply on their environment. This approach uses an instrument known as laser tweezers to measure the pressure that microtubules exert on attached beads. With this assay, Murray et al. were able to investigate whether microtubule 'strength' is linked to protofilament length, a property that varies between species and in response to magnesium. The experiments revealed that adding magnesium not only lengthens protofilament curls but also increases the work generated from curling. In addition, they showed that yeast protofilaments create longer curls with more force compared to bovine microtubules. Together, these findings demonstrate that it is possible to fine-tune the force exerted by protofilaments on their environment by controlling their length. This knowledge could be helpful to scientists investigating the role of microtubules in cell division. Certain cancer drugs already target microtubules in order to stop rogue cells from multiplying. However, serious side-effects often emerge because these compounds also interfere with microtubule-based processes essential for healthy cells. By better understanding how protofilaments 'pull' on chromosomes, it may become possible to design targeted approaches to stop cell division but preserve the other fundamental roles that microtubules play in the body.


Magnesium , Tubulin , Animals , Cattle , Tubulin/chemistry , Microtubules/chemistry , Cytoskeleton , Kinetochores
8.
Methods Mol Biol ; 2478: 653-676, 2022.
Article En | MEDLINE | ID: mdl-36063337

Optical traps have enabled foundational studies of how mechanoenzymes such as kinesins and dynein motors walk along microtubules, how myosins move along F-actin, and how nucleic acid enzymes move along DNA or RNA. Often the filamentous substrates serve merely as passive tracks for mechanoenzymes but microtubules and F-actin are themselves dynamic protein polymers, capable of generating movement and force independently of conventional motors. Microtubule-driven forces are particularly important during mitosis, when they align duplicated chromosomes at the metaphase plate and then pull them apart during anaphase. These vital movements depend on specialized protein assemblies called kinetochores that couple the chromosomes to the tips of dynamic microtubule filaments, thereby allowing filament shortening to produce pulling forces. Although great strides have been made toward understanding the structures and functions of many kinetochore subcomplexes, the biophysical basis for their coupling to microtubule tips remains unclear. During tip disassembly, strain energy is released when straight protofilaments in the microtubule lattice curl outward, creating a conformational wave that propagates down the microtubule. A popular viewpoint is that the protofilaments as they curl outward hook elements of the kinetochore and tug on them, transferring some of their curvature strain energy to the kinetochore. As a first step toward testing this idea, we recently developed a laser trap assay to directly measure the working strokes generated by curling protofilaments. Our "wave" assay is based on an earlier pioneering study, with improvements that allow measurement of curl-driven movements as functions of force and quantification of their conformational strain energy. In this chapter, we provide a detailed protocol for our assay and describe briefly our instrument setup and data analysis methods.


Actins , Stroke , Actins/metabolism , Cytoskeleton , Humans , Kinetochores , Microtubules/metabolism , Spindle Apparatus/metabolism , Stroke/metabolism
9.
Nat Commun ; 13(1): 2152, 2022 04 20.
Article En | MEDLINE | ID: mdl-35443757

Chromosome segregation requires sister kinetochores to attach microtubules emanating from opposite spindle poles. Proper attachments come under tension and are stabilized, but defective attachments lacking tension are released, giving another chance for correct attachments to form. This error correction process depends on Aurora B kinase, which phosphorylates kinetochores to destabilize their microtubule attachments. However, the mechanism by which Aurora B distinguishes tense versus relaxed kinetochores remains unclear because it is difficult to detect kinase-triggered detachment and to manipulate kinetochore tension in vivo. To address these challenges, we apply an optical trapping-based assay using soluble Aurora B and reconstituted kinetochore-microtubule attachments. Strikingly, the tension on these attachments suppresses their Aurora B-triggered release, suggesting that tension-dependent changes in the conformation of kinetochores can regulate Aurora B activity or its outcome. Our work uncovers the basis for a key mechano-regulatory event that ensures accurate segregation and may inform studies of other mechanically regulated enzymes.


Chromosome Segregation , Kinetochores , Aurora Kinase B/genetics , Microtubules , Spindle Poles
10.
J Cell Biol ; 221(5)2022 05 02.
Article En | MEDLINE | ID: mdl-35353161

Accurate mitosis requires kinetochores to make persistent, load-bearing attachments to dynamic microtubule tips, thereby coupling chromosome movements to tip growth and shortening. This tip-coupling behavior depends on the conserved Ndc80 complex and, in budding yeast, on the Dam1 complex, which bind each other directly via three distinct interacting regions. The functional relevance of these multiple interactions was mysterious. Here we show that interactions between two of these regions support the high rupture strengths that occur when applied force is rapidly increased and also support the stability of tip-coupling when force is held constant over longer durations. The contribution of either of these two regions to tip-coupling is reduced by phosphorylation by Aurora B kinase. The third interaction region makes no apparent contribution to rupture strength, but its phosphorylation by Aurora B kinase specifically decreases the long-term stability of tip-coupling. The specific reduction of long-term stability relative to short-term strength might have important implications for mitotic error correction.


Kinetochores , Microtubule-Associated Proteins , Microtubules , Mitosis , Saccharomyces cerevisiae Proteins , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Cell Cycle Proteins , Chromosome Segregation , Kinetochores/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nuclear Proteins , Phosphorylation , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Oncoscience ; 8: 134-153, 2021.
Article En | MEDLINE | ID: mdl-34926718

Hec1 (Highly expressed in cancer 1) resides in the outer kinetochore where it works to facilitate proper kinetochore-microtubule interactions during mitosis. Hec1 is overexpressed in various cancers and its expression shows correlation with high tumour grade and poor patient prognosis. Chemical perturbation of Hec1 is anticipated to impair kinetochore-microtubule binding, activate the spindle assembly checkpoint (spindle checkpoint) and thereby suppress cell proliferation. In this study, we performed high-throughput screen to identify novel small molecules that target the Hec1 calponin homology domain (CHD), which is needed for normal microtubule attachments. 4 million compounds were first virtually fitted against the CHD, and the best hit molecules were evaluated in vitro. These approaches led to the identification of VTT-006, a 1,2-disubstituted-tetrahydro-beta-carboline derivative, which showed binding to recombinant Ndc80 complex and modulated Hec1 association with microtubules in vitro. VTT-006 treatment resulted in chromosome congression defects, reduced chromosome oscillations and induced loss of inter-kinetochore tension. Cells remained arrested in mitosis with an active spindle checkpoint for several hours before undergoing cell death. VTT-006 suppressed the growth of several cancer cell lines and enhanced the sensitivity of HeLa cells to Taxol. Our findings propose that VTT-006 is a potential anti-mitotic compound that disrupts M phase, impairs kinetochore-microtubule interactions, and activates the spindle checkpoint.

12.
J Cell Sci ; 134(23)2021 12 01.
Article En | MEDLINE | ID: mdl-34854468

Dynein motors move the mitotic spindle to the cell division plane in many cell types, including in budding yeast, in which dynein is assisted by numerous factors including the microtubule-associated protein (MAP) She1. Evidence suggests that She1 plays a role in polarizing dynein-mediated spindle movements toward the daughter cell; however, how She1 performs this function is unknown. We find that She1 assists dynein in maintaining the spindle in close proximity to the bud neck, such that, at anaphase onset, the chromosomes are segregated to mother and daughter cells. She1 does so by attenuating the initiation of dynein-mediated spindle movements within the mother cell, thus ensuring such movements are polarized toward the daughter cell. Our data indicate that this activity relies on She1 binding to the microtubule-bound conformation of the dynein microtubule-binding domain, and to astral microtubules within mother cells. Our findings reveal how an asymmetrically localized MAP directionally tunes dynein activity by attenuating motor activity in a spatially confined manner.


Microtubule-Associated Proteins , Saccharomyces cerevisiae Proteins , Dyneins/genetics , Dyneins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
13.
J Cell Biol ; 220(12)2021 12 06.
Article En | MEDLINE | ID: mdl-34647959

Dividing cells detect and correct erroneous kinetochore-microtubule attachments during mitosis, thereby avoiding chromosome missegregation. The Aurora B kinase phosphorylates microtubule-binding elements specifically at incorrectly attached kinetochores, promoting their release and providing another chance for proper attachments to form. However, growing evidence suggests that the Mps1 kinase is also required for error correction. Here we directly examine how Mps1 activity affects kinetochore-microtubule attachments using a reconstitution-based approach that allows us to separate its effects from Aurora B activity. When endogenous Mps1 that copurifies with kinetochores is activated in vitro, it weakens their attachments to microtubules via phosphorylation of Ndc80, a major microtubule-binding protein. This phosphorylation contributes to error correction because phospho-deficient Ndc80 mutants exhibit genetic interactions and segregation defects when combined with mutants in other error correction pathways. In addition, Mps1 phosphorylation of Ndc80 is stimulated on kinetochores lacking tension. These data suggest that Mps1 provides an additional mechanism for correcting erroneous kinetochore-microtubule attachments, complementing the well-known activity of Aurora B.


Kinetochores/metabolism , Microtubules/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Kinetochores/chemistry , M Phase Cell Cycle Checkpoints , Nuclear Proteins/chemistry , Phosphorylation , Protein Binding , Saccharomyces cerevisiae Proteins/chemistry , Signal Transduction
14.
J Cell Biol ; 220(3)2021 03 01.
Article En | MEDLINE | ID: mdl-33464308

To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end-directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule-pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end-directed force generation will be needed to achieve antiparallel alignment.


Microtubules/metabolism , Mitosis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Spindle Apparatus/metabolism , Genetic Engineering , Mutation/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/metabolism , Spindle Pole Bodies/metabolism , Torsion, Mechanical
15.
Curr Biol ; 31(2): 283-296.e7, 2021 01 25.
Article En | MEDLINE | ID: mdl-33157029

Kinetochores direct chromosome segregation in mitosis and meiosis. Faithful gamete formation through meiosis requires that kinetochores take on new functions that impact homolog pairing, recombination, and the orientation of kinetochore attachment to microtubules in meiosis I. Using an unbiased proteomics pipeline, we determined the composition of centromeric chromatin and kinetochores at distinct cell-cycle stages, revealing extensive reorganization of kinetochores during meiosis. The data uncover a network of meiotic chromosome axis and recombination proteins that bind to centromeres in the absence of the microtubule-binding outer kinetochore sub-complexes during meiotic prophase. We show that the Ctf19cCCAN inner kinetochore complex is essential for kinetochore organization in meiosis. Our functional analyses identify a Ctf19cCCAN-dependent kinetochore assembly pathway that is dispensable for mitotic growth but becomes critical upon meiotic entry. Therefore, changes in kinetochore composition and a distinct assembly pathway specialize meiotic kinetochores for successful gametogenesis.


Centromere/metabolism , Chromatin/metabolism , Cytoskeletal Proteins/metabolism , Kinetochores/metabolism , Meiosis , Saccharomyces cerevisiae Proteins/metabolism , Chromosome Segregation , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/isolation & purification , Mitosis , Proteomics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification
16.
Curr Biol ; 30(22): 4491-4499.e5, 2020 11 16.
Article En | MEDLINE | ID: mdl-32946748

To ensure the faithful inheritance of DNA, a macromolecular protein complex called the kinetochore sustains the connection between chromosomes and force-generating dynamic microtubules during cell division. Defects in this process lead to aneuploidy, a common feature of cancer cells and the cause of many developmental diseases [1-4]. One of the major microtubule-binding activities in the kinetochore is mediated by the conserved Ndc80 complex (Ndc80c) [5-7]. In budding yeast, the retention of kinetochores on dynamic microtubule tips also depends on the essential heterodecameric Dam1 complex (Dam1c) [8-15], which binds to the Ndc80c and is proposed to be a functional ortholog of the metazoan Ska complex [16, 17]. The load-bearing activity of the Dam1c depends on its ability to oligomerize, and the purified complex spontaneously self-assembles into microtubule-encircling oligomeric rings, which are proposed to function as collars that allow kinetochores to processively track the plus-end tips of microtubules and harness the forces generated by disassembling microtubules [10-15, 18-22]. However, it is unknown whether there are specific regulatory events that promote Dam1c oligomerization to ensure accurate segregation. Here, we used a reconstitution system to discover that Cdk1, the major mitotic kinase that drives the cell cycle, phosphorylates the Ask1 component of the Dam1c to increase its residence time on microtubules and enhance kinetochore-microtubule attachment strength. We propose that Cdk1 activity promotes Dam1c oligomerization to ensure that kinetochore-microtubule attachments are stabilized as kinetochores come under tension in mitosis.


CDC28 Protein Kinase, S cerevisiae/metabolism , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Chromosome Segregation , Enzyme Assays , Microtubule-Associated Proteins/genetics , Mitosis , Mutation , Phosphorylation/physiology , Protein Multimerization/physiology , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics
17.
Mol Biol Cell ; 31(20): 2187-2194, 2020 09 15.
Article En | MEDLINE | ID: mdl-32726183

Microtubule nucleation is spatiotemporally regulated in cells by several known molecules, including the template γ-tubulin and the polymerase XMAP215. The role of XMAP215 in nucleation is under debate, specifically whether it acts independently as a polymerase or acts dependently with γ-tubulin. We first confirm XMAP215 as a classically defined nucleator that reduces the nucleation lag seen in bulk tubulin assembly. Secondly, using deletion constructs, we probe the domain requirements for XMAP215 to promote microtubule nucleation. We show that its ability to nucleate microtubules in purified solutions correlates with its ability to elongate existing microtubules and does not depend on the number of tumor overexpressed gene (TOG) domains. Finally, we show that XMAP215 and γ-tubulin promote αß-tubulin assembly in an additive, not synergistic, manner. Thus, their modes of action during microtubule nucleation are distinct. These findings suggest there are at least two independent processes in nucleation, one promoted by γ-tubulin and one promoted by XMAP215. We propose that XMAP215 accelerates the addition of subunits to existing nucleation intermediates formed either spontaneously or by oligomers of γ-tubulin. [Media: see text].


Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Tubulin/metabolism , Animals , Humans , Microtubule-Associated Proteins/chemistry , Microtubules/chemistry , Protein Aggregates/physiology , Protein Binding/physiology , Tubulin/chemistry
18.
Elife ; 92020 05 14.
Article En | MEDLINE | ID: mdl-32406818

Partitioning duplicated chromosomes equally between daughter cells is a microtubule-mediated process essential to eukaryotic life. A multi-protein machine, the kinetochore, drives chromosome segregation by coupling the chromosomes to dynamic microtubule tips, even as the tips grow and shrink through the gain and loss of subunits. The kinetochore must harness, transmit, and sense mitotic forces, as a lack of tension signals incorrect chromosome-microtubule attachment and precipitates error correction mechanisms. But though the field has arrived at a 'parts list' of dozens of kinetochore proteins organized into subcomplexes, the path of force transmission through these components has remained unclear. Here we report reconstitution of functional Saccharomyces cerevisiae kinetochore assemblies from recombinantly expressed proteins. The reconstituted kinetochores are capable of self-assembling in vitro, coupling centromeric nucleosomes to dynamic microtubules, and withstanding mitotically relevant forces. They reveal two distinct pathways of force transmission and Ndc80c recruitment.


Chromosome Segregation , Chromosomes, Fungal , Kinetochores/metabolism , Mechanotransduction, Cellular , Saccharomyces cerevisiae/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Microtubules/genetics , Microtubules/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Mechanical
19.
PLoS Genet ; 15(10): e1008423, 2019 10.
Article En | MEDLINE | ID: mdl-31584935

Accurate segregation of chromosomes to daughter cells is a critical aspect of cell division. It requires the kinetochores on duplicated chromosomes to biorient, attaching to microtubules from opposite poles of the cell. Bioriented attachments come under tension, while incorrect attachments lack tension and must be released to allow proper attachments to form. A well-studied error correction pathway is mediated by the Aurora B kinase, which destabilizes low tension-bearing attachments. We recently discovered that in vitro, kinetochores display an additional intrinsic tension-sensing pathway that utilizes Stu2. The contribution of kinetochore-associated Stu2 to error correction in cells, however, was unknown. Here, we identify a Stu2 mutant that abolishes its kinetochore function and show that it causes biorientation defects in vivo. We also show that this Stu2-mediated pathway functions together with the Aurora B-mediated pathway. Altogether, our work indicates that cells employ multiple pathways to ensure biorientation and the accuracy of chromosome segregation.


Aurora Kinases/metabolism , Chromosome Segregation , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Aurora Kinases/genetics , Microtubule-Associated Proteins/genetics , Microtubules , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
20.
Proc Natl Acad Sci U S A ; 116(35): 17355-17360, 2019 08 27.
Article En | MEDLINE | ID: mdl-31405987

Accurate mitosis depends on a surveillance system called the spindle assembly checkpoint. This checkpoint acts at kinetochores, which attach chromosomes to the dynamic tips of spindle microtubules. When a kinetochore is unattached or improperly attached, the protein kinase Mps1 phosphorylates kinetochore components, catalyzing the generation of a diffusible "wait" signal that delays anaphase and gives the cell time to correct the error. When a kinetochore becomes properly attached, its checkpoint signal is silenced to allow progression into anaphase. Recently, microtubules were found to compete directly against recombinant human Mps1 fragments for binding to the major microtubule-binding kinetochore element Ndc80c, suggesting a direct competition model for silencing the checkpoint signal at properly attached kinetochores. Here, by developing single-particle fluorescence-based assays, we tested whether such direct competition occurs in the context of native kinetochores isolated from yeast. Mps1 levels were not reduced on kinetochore particles bound laterally to the sides of microtubules or on particles tracking processively with disassembling tips. Instead, we found that Mps1 kinase activity was sufficient to promote its release from the isolated kinetochores. Mps1 autophosphorylation, rather than phosphorylation of other kinetochore components, was responsible for this dissociation. Our findings suggest that checkpoint silencing in yeast does not arise from a direct competition between Mps1 and microtubules, and that phosphoregulation of Mps1 may be a critical aspect of the silencing mechanism.


Fungal Proteins/metabolism , Kinetochores/metabolism , Protein Serine-Threonine Kinases/metabolism , Humans , Kinetochores/chemistry , Microtubules/metabolism , Models, Biological , Phosphorylation , Protein Binding , Saccharomycetales/metabolism
...