Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Acc Chem Res ; 57(8): 1098-1110, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38530194

ConspectusFor the delivery of drugs, different nanosized drug carriers (e.g., liposomes, lipid nanoparticles, and micelles) have been developed in order to treat diseases that afflict society. Frequently, these vehicles are formed by the self-assembly of small molecules to encapsulate the therapeutic cargo of interest. Over decades, nanoparticles have been optimized to make them more efficient and specific to fulfill tailor-made tasks, such as specific cell targeting or enhanced cellular uptake. In recent years, lipid-based nanoparticles in particular have taken center stage; however, off-targeting side effects and poor endosomal escape remain major challenges since therapies require high efficacy and acceptable toxicity.To overcome these issues, many different approaches have been explored to make drug delivery more specific, resulting in reduced side effects, to achieve an optimal therapeutic effect and a lower required dose. The fate of nanoparticles is largely dependent on size, shape, and surface charge. A common approach to designing drug carriers with targeting capability is surface modification. Different approaches to functionalize nanoparticles have been investigated since the attachment of targeting moieties plays a significant role in whether they can later interact with surface-exposed receptors of cells. To this end, various strategies have been used involving different classes of biomolecules, such as small molecules, nucleic acids, antibodies, aptamers, and peptides.Peptides in particular are often used since there are many receptors overexpressed in different specific cell types. Furthermore, peptides can be produced and modified at a low cost, enabling high therapeutic screening. Cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs) are frequently used for this purpose. Less studied in this context are fusogenic coiled-coil peptides. Lipid-based nanoparticles functionalized with these peptides are able to avoid the endolysosomal pathway; instead such particles can be taken up by membrane fusion, resulting in increased delivery of payload. Furthermore, they can be used for targeting cells/organs but are not directed at surface-exposed receptors. Instead, they recognize complementary peptide sequences, facilitating their uptake into cells.In this Account, we will discuss peptides as moieties for enhanced cytosolic delivery, targeted uptake, and how they can be attached to lipid-based nanoparticles to alter their properties. We will discuss the properties imparted to the particles by peptides, surface modification approaches, and recent examples showing the power of peptides for in vitro and in vivo drug delivery. The main focus will be on the functionalization of lipid-based nanoparticles by fusogenic coiled-coil peptides, highlighting the relevance of this concept for the development of future therapeutics.


Cell-Penetrating Peptides , Nanoparticles , Liposomes/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers , Cell-Penetrating Peptides/chemistry , Lipids/chemistry
2.
Small ; : e2310781, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38488770

Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.

3.
Biomed Pharmacother ; 165: 115065, 2023 Sep.
Article En | MEDLINE | ID: mdl-37406506

Ionizable cationic lipids (ICLs) play an essential role in the effectiveness of lipid nanoparticles (LNPs) for delivery of mRNA therapeutics and vaccines; therefore, critical evaluations of their biological performance would extend the existing knowledge in the field. In the present study, we examined the effects of the three clinically-approved ICLs, Dlin-MC3-DMA, ALC-0315 and SM-102, as well as DODAP, on the in vitro and in vivo performance of LNPs for mRNA delivery and vaccine efficacy. mRNA-LNPs containing these lipids were successfully prepared, which were all found to be very similar in their physicochemical properties and mRNA encapsulation efficiencies. Furthermore, the results of the in vitro studies indicated that these mRNA-LNPs were efficiently taken up by immortalized and primary immune cells with comparable efficiency; however, SM-102-based LNPs were superior in inducing protein expression and antigen-specific T cell proliferation. In contrast, in vivo studies revealed that LNPs containing ALC-0315 and SM-102 yielded almost identical protein expression levels in zebrafish embryos, which were significantly higher than Dlin-MC3-DMA-based LNPs. Additionally, a mouse immunization study demonstrated that a single-dose subcutaneous administration of the mRNA-LNPs resulted in a high production of intracellular cytokines by antigen-specific T cells, but no significant differences among the three clinically-approved ICLs were observed, suggesting a weak correlation between in vitro and in vivo outcomes. This study provides strong evidence that ICLs modulate the performance of mRNA-LNPs and that in vitro data does not adequately predict their behavior in vivo.


Lipids , Nanoparticles , Animals , Mice , Lipids/chemistry , RNA, Messenger , Vaccine Efficacy , Zebrafish/metabolism , Transfection , Nanoparticles/chemistry , RNA, Small Interfering/genetics
4.
Nat Commun ; 13(1): 5524, 2022 09 22.
Article En | MEDLINE | ID: mdl-36138004

Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process. Specifically, we show that L-forms of the filamentous actinomycete Kitasatospora viridifaciens can take up plasmid DNA, polysaccharides (dextran) and 150-nm lipid nanoparticles. The process involves invagination of the cytoplasmic membrane, leading to formation of intracellular vesicles that encapsulate extracellular material. DNA uptake is not affected by deletion of genes homologous to comEC and comEA, which are required for natural transformation in other species. However, uptake is inhibited by sodium azide or incubation at 4 °C, suggesting the process is energy-dependent. The encapsulated materials are released into the cytoplasm upon degradation of the vesicle membrane. Given that cell wall-deficient bacteria are considered a model for early life forms, our work reveals a possible mechanism for primordial cells to acquire food or genetic material before invention of the bacterial cell wall.


Bacteria , Dextrans , Bacteria/genetics , Cell Wall/metabolism , DNA/metabolism , DNA, Bacterial/genetics , Endocytosis , Liposomes , Nanoparticles , Sodium Azide
5.
Chembiochem ; 23(5): e202100618, 2022 03 04.
Article En | MEDLINE | ID: mdl-35043526

Targeting specific protein binding sites to interfere with protein-protein interactions (PPIs) is crucial for the rational modulation of biologically relevant processes. Survivin, which is highly overexpressed in most cancer cells and considered to be a key player of carcinogenesis, features two functionally relevant binding sites. Here, we demonstrate selective disruption of the Survivin/Histone H3 or the Survivin/Crm1 interaction using a supramolecular approach. By rational design we identified two structurally related ligands (LNES and LHIS ), capable of selectively inhibiting these PPIs, leading to a reduction in cancer cell proliferation.


Inhibitor of Apoptosis Proteins , Binding Sites , Cell Proliferation , Inhibitor of Apoptosis Proteins/metabolism , Protein Binding , Survivin/chemistry , Survivin/metabolism
6.
Angew Chem Int Ed Engl ; 59(14): 5567-5571, 2020 03 27.
Article En | MEDLINE | ID: mdl-31916356

The protein Survivin is highly upregulated in most cancers and considered to be a key player in carcinogenesis. We explored a supramolecular approach to address Survivin as a drug target by inhibiting the protein-protein interaction of Survivin and its functionally relevant binding partner Histone H3. Ligand L1 is based on the guanidiniocarbonyl pyrrole cation and serves as a highly specific anion binder in order to target the interaction between Survivin and Histone H3. NMR titration confirmed binding of L1 to Survivin's Histone H3 binding site. The inhibition of the Survivin-Histone H3 interaction and consequently a reduction of cancer cell proliferation were demonstrated by microscopic and cellular assays.


Histones/metabolism , Pyrroles/chemistry , Survivin/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Histones/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Protein Binding , Pyrroles/metabolism , Pyrroles/pharmacology , Survivin/chemistry
7.
Soft Matter ; 15(36): 7117-7121, 2019 Sep 18.
Article En | MEDLINE | ID: mdl-31503269

In this contribution we describe a novel hydrogelator based on four guadiniumcarbonylpyrrole units in combination with aggregation-induced emission active aromatic thioethers which undergo self-assembly into fibrills in aqueous media as visible in AFM and TEM measurements. These fibrills are weakly luminescent and unable to induce gelation. Upon addition of malonic acid a cross-linking of the single fibres was detected leading to the formation of a highly emissive stable hydrogel. This gel responds to several external stimuli such as heat, shaking as well as pH changes.

...