Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(9): e14500, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354911

RESUMEN

The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.


Asunto(s)
Árboles , Clima Tropical , Árboles/crecimiento & desarrollo , Cambio Climático , Reproducción , Bosques
2.
J Environ Manage ; 370: 122529, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299119

RESUMEN

Wildfire governance requires addressing driving physical, biological and socio-economic processes, by promoting the development of fire-resistant and resilient landscapes. These landscapes can best be achieved by strategies that integrate fuel management for direct prevention with allied socio-economic activities, through the collaboration of stakeholders with different and sometimes conflicting interests. This work aims to address the need for new approaches supporting the participatory process of collective decision-making, helping stakeholders explore land management strategies for landscape fire resilience. We present and discuss a methodology combining agent-based modelling with a role-playing game. It was tested in a valley of the Italian Alps, involving 23 local stakeholders in forest and pasture management in three game sessions. Evaluation was based on observation of game sessions, collection of feedback via immediate post-session debriefing and questionnaires, and long-term (multi-year) assessment carried out through semi-structured interviews. We found the methodology valuable for facilitating discussion among different stakeholders, who were able to identify context-related challenges (land fragmentation and land abandonment, stakeholders' limited collaboration, controversial drives of European funding) and possible strategies for producing a fire-resilient landscape (community management forms of pastoralists activities for maintaining land cover diversity). The approach also triggered a positive process for longer-term change. By analysing the outcomes, we are able to identify four key recommendations for future work using serious gaming for sustainable landscapes: 1) aim for an even composition of session groups, 2) consider the multiple levels of organisation in the area, 3) use the allocation of game roles to disrupt power dynamics, and 4) seek to involve the broadest stakeholder spectrum in developing the game itself.

3.
Ecol Lett ; 27(7): e14474, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994849

RESUMEN

Spatial synchrony may be tail-dependent, meaning it is stronger for peaks rather than troughs, or vice versa. High interannual variation in seed production in perennial plants, called masting, can be synchronized at subcontinental scales, triggering extensive resource pulses or famines. We used data from 99 populations of European beech (Fagus sylvatica) to examine whether masting synchrony differs between mast peaks and years of seed scarcity. Our results revealed that seed scarcity occurs simultaneously across the majority of the species range, extending to populations separated by distances up to 1800 km. Mast peaks were spatially synchronized at distances up to 1000 km and synchrony was geographically concentrated in northeastern Europe. Extensive synchrony in the masting lower tail means that famines caused by beech seed scarcity are amplified by their extensive spatial synchrony, with diverse consequences for food web functioning and climate change biology.


Asunto(s)
Fagus , Semillas , Fagus/fisiología , Semillas/fisiología , Europa (Continente) , Cambio Climático
4.
Trends Ecol Evol ; 39(9): 851-862, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38862358

RESUMEN

Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question.


Asunto(s)
Evolución Biológica , Cambio Climático , Modelos Biológicos , Reproducción/fisiología , Animales
5.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709196

RESUMEN

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Asunto(s)
Cambio Climático , Fagus , Estaciones del Año , Temperatura , Fagus/crecimiento & desarrollo , Fagus/fisiología , Europa (Continente) , Semillas/crecimiento & desarrollo , Semillas/fisiología , Reproducción , Árboles/crecimiento & desarrollo , Árboles/fisiología , Polinización
6.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386149

RESUMEN

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Asunto(s)
Reproducción , Árboles , Fertilidad , Semillas , Saciedad
7.
Sci Total Environ ; 890: 164281, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37216984

RESUMEN

Wildfire regimes affected by global change have been the cause of major concern in recent years. Both direct prevention (e.g., fuel management planning) and land governance strategies (e.g., agroforestry development) can have an indirect regulatory effect on wildfires. Herein, we tested the hypothesis that active land planning and management in Italy have mitigated wildfire impacts in terms of loss of ecosystem services and forest cover, and burned wildland-urban interface, from 2007 to 2017. At the national scale, we assessed the effect size of major potential fire drivers such as climate, weather, flammability, socio-economic descriptors, land use changes, and proxies for land governance (e.g., European funds for rural development, investments in sustainable forest management, agro-pastoral activities), including potential interactions, on fire-related impacts via Random Forest modelling and Generalized Additive Mixed Model. Agro-forest districts (i.e., aggregations of neighbouring municipalities with homogeneous forest and agricultural characteristics) were used as spatial units of analysis. Our results confirm that territories with more active land governance show lower wildfire impacts, even under severe flammability and climatic conditions. This study supports current regional, national, and European strategies towards "fire resistant and resilient landscapes" by fostering agro-forestry, rural development, and nature conservation integrated policies.


Asunto(s)
Incendios Forestales , Ecosistema , Italia , Tiempo (Meteorología) , Ciudades
8.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501313

RESUMEN

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Asunto(s)
Bosques , Semillas , Fertilidad , Reproducción , Semillas/fisiología , Árboles
9.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460530

RESUMEN

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Asunto(s)
Bosques , Árboles , Biodiversidad , Clima , Fertilidad , Semillas
10.
Philos Trans R Soc Lond B Biol Sci ; 376(1839): 20200369, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34657462

RESUMEN

Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed masting or mast seeding has important consequences for plant reproductive success, ecosystem dynamics and plant-human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting. To provide a broad overview, we reflect on the state-of-the-art of masting research in terms of underlying proximate mechanisms, ontogeny, adaptations, phylogeny and applications to conservation. While the mechanistic drivers and fitness consequences of masting have received most attention, the evolutionary history, ontogenetic trajectory and applications to plant-human interactions are poorly understood. With increased availability of long-term datasets across broader geographical and taxonomic scales, as well as advances in molecular approaches, we expect that many mysteries of masting will be solved soon. The increased understanding of this global phenomenon will provide the foundation for predictive modelling of seed crops, which will improve our ability to manage forests and agricultural fruit and nut crops in the Anthropocene. This article is part of the theme issue 'The ecology and evolution of synchronized seed production in plants'.


Asunto(s)
Ecosistema , Reproducción , Ecología , Humanos , Semillas , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA