Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(6): e2307840, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070186

RESUMEN

Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Ratas , Animales , Electroósmosis , Oro , Dióxido de Silicio , Enfermedad Aguda , Microfluídica , Técnicas Electroquímicas , Mediciones Luminiscentes
2.
ACS Appl Mater Interfaces ; 15(27): 32075-32086, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368492

RESUMEN

Vertically stacked artificial 2D superlattice hybrids fabricated through molecular-level hybridization in a controlled fashion play a vital role in scientific and technological fields, but developing an alternate assembly of 2D atomic layers with strong electrostatic interactions could be much more challenging. In this study, we have constructed an alternately stacked self-assembled superlattice composite through integration of CuMgAl layered double hydroxide (LDH) nanosheets having positive charge with negatively charged Ti3C2Tx layers using well-controlled liquid-phase co-feeding protocol and electrostatic attraction and investigated its electrochemical performance in sensing early cancer biomarkers, i.e., hydrogen peroxide (H2O2). The molecular-level CuMgAl LDH/Ti3C2Tx superlattice self-assembly possesses superb conductivity and electrocatalytic properties, which are significant for obtaining a high electrochemical sensing aptitude. Electron penetration in Ti3C2Tx layers and rapid ion diffusion along 2D galleries have shortened the diffusion path and enhanced the charge transferring efficacy. The electrode modified with the CuMgAl LDH/Ti3C2Tx superlattice has demonstrated admirable electrocatalytic abilities in H2O2 detection with a wide linear concentration range and low real-time limit of detection (LOD) of 0.1 nM with signal/noise ratio (S/N) = 3. Practically, an electrochemical sensing podium based on the CuMgAl LDH/Ti3C2Tx superlattice has been effectively applied in real-time in vitro tracking of H2O2 effluxes excreted from different live cancer cells and normal cells after being encouraged by stimulation. The results exhibit that molecular-level heteroassembly holds great potential in electrochemical sensors to detect promising biomarkers.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Titanio , Técnicas Electroquímicas/métodos , Hidróxidos/química , Electrodos
3.
Biosensors (Basel) ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551139

RESUMEN

Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , Colorantes Fluorescentes , MicroARNs/análisis , ADN , Coloración y Etiquetado , Endonucleasas , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos
4.
Biosensors (Basel) ; 12(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36551150

RESUMEN

Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Técnicas Biosensibles/métodos , Grafito/química , Inmunoensayo , Nanoestructuras/química , Nanotecnología/métodos , Técnicas Electroquímicas/métodos
5.
Anal Chem ; 94(47): 16384-16392, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36377849

RESUMEN

Matrix metalloproteinase (MMP) is closely correlated with tumorigenesis and progression. Establishing a low-cost, simple, rapid, and sensitive method for its detection is highly desired for the broad-spectrum screening of oral cancer. Herein, we combine the MMP-specific cleavage ability with magnetic separation technology and a commercial test strip to construct a sensitive biosensor to detect MMP-1 conveniently for the first time. The method involves two DNA probes, peptide-DNA1 and hCG-DNA2, where DNA1 and DNA2 are complementary sequences, and the peptide labeled with biotin can bind streptavidin-modified magnetic nanoparticles stably. The human chorionic gonadotropin (hCG) is the target of the pregnancy test strip. The cleavage reaction mediated by MMP-1 releases peptide-DNA1 and the hybridized hCG-DNA2 into the solution, and the hCG probe in the solution can develop color on the test strip for the determination of MMP-1 after magnetic separation. This method utilizes the high specificity of MMP-1's proteolytic cleavage and the high sensitivity of the test strip to the target probe, achieving a sensitive detection of MMP-1 with a visual detection limit of 65.5 pg/mL. The method shows better anti-interference and sensitivity than the enzyme-linked immunosorbent assay in the application of a biological sample matrix, suggesting its great potential for clinical diagnosis, especially for broad-spectrum oral cancer screening.


Asunto(s)
Técnicas Biosensibles , Pruebas de Embarazo , Embarazo , Femenino , Humanos , Metaloproteinasa 1 de la Matriz , Saliva , Sondas de ADN , Técnicas Biosensibles/métodos , Péptidos , Límite de Detección
6.
Curr Top Med Chem ; 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36043769

RESUMEN

Metal-organic frameworks (MOFs) have significant advantages over other candidate classes of chemo-sensory materials owing to their extraordinary structural tunability and characteristics. MOF-based biosensing is a simple, and convenient method for identifying various species. Biomarkers are molecular or cellular processes that link environmental exposure to a health outcome. Biomarkers are important in understanding the links between environmental chemical exposure and the development of chronic diseases, as well as in identifying disease-prone subgroups. Until now, several species, including nanoparticles (NPs) and their nanocomposites, small molecules, and unique complex systems, have been used for the chemical sensing of biomarkers. Following the overview of the field, we discussed the various fabrication methods for MOFs development in this review. We provide a thorough overview of the previous five years of progress to broaden the scope of analytes for future research. Several enzymatic and non-enzymatic sensors are offered, together with a mandatory measuring method that includes detection range and dynamic range. In addition, we reviewed the comparison of enzymatic and non-enzymatic biosensors, inventive edges, and the difficulties that need to be solved. This work might open up new possibilities for material production, sensor development, medical diagnostics, and other sensing fields.

7.
Biosens Bioelectron ; 216: 114644, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007409

RESUMEN

Contaminant residue analysis in milk can provide essential assistance for safety quality and contamination level management of milk production, which is critical for safeguarding public health. In this study, the pregnancy test strip is employed to achieve multiple analytes detection based on the specific recognition of aptamer and terminal deoxynucleotidyl transferase associated with split G-quadruplex/hemin deoxyribozyme system. Through the subsequent enzyme catalyzed reaction, the detection signal can be further amplified to improve the sensitivity. The method does not need to assemble test strip, prepare and purify antibodies/haptens, nor design complex probe sequences. By coupling human chorionic gonadotrophin with DNA probes and combining magnetic separation technology, the targets can be determined via the test strip. Under the optimized conditions, the visual detection limits for mercury ion, bisphenol A, and penicillin are 1, 0.1 and 0.05 nM, respectively. The detection results show that the method displays good accuracy and practicability in spiked milk sample. The method presents a simple scheme, low cost as well as good design versatility, which demonstrates great application prospect for the sensitive, low-cost, and convenient detection of food matrices.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Mercurio , Pruebas de Embarazo , Animales , Técnicas Biosensibles/métodos , Colorantes , ADN Nucleotidilexotransferasa/química , Sondas de ADN , ADN Catalítico/química , Femenino , Haptenos , Hemina/química , Humanos , Límite de Detección , Leche , Penicilinas , Embarazo
8.
Food Chem ; 395: 133642, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35820273

RESUMEN

In this work, we have successfully developed Cu-MOF/CuO/NiO nanocomposites (NCs) and employed as a novel electrochemical sensing platform in catechol (CC) detection. The Scanning electron microscopy (SEM) along Energy dispersive X-ray Analysis (EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) are carried out to characterize the as-fabricated Cu-MOF/CuO/NiO NCs. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have used to obtain oxidation peak currents of CC. Glassy carbon electrode (GCE) modified with Cu-MOF/CuO/NiO has exposed the superb EC properties representing low limit of detection (LOD) of 0.0078 µM (S/N = 3). To assess the practicability of Cu-MOF/CuO/NiO based sensing medium, it has been used to detect CC from two varieties of tea, namely black and green. Thus, we anticipate that this structural integration strategy possesses encouraging application potential in sensing podium and material synthesis.


Asunto(s)
Nanocompuestos , Catecoles , Técnicas Electroquímicas/métodos , Electrodos , Nanocompuestos/química , Óxidos ,
9.
ACS Appl Mater Interfaces ; 14(17): 19480-19490, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446543

RESUMEN

The ultrasensitive determination of sulfate reducing bacteria (SRB) is of great significance for their crucial roles in environmental and industrial harms together with the early detection of microbial corrosion. In this work, we report the development of highly efficient electrocatalysts, i.e., Cu2O-CuO extended hexapods (EHPs), which are wrapped on homemade freestanding graphene paper to construct a flexible paper electrode in the electrochemical sensing of the biomarker sulfide for SRB detection. Herein Cu2O-CuO EHPs have been synthesized via a highly controllable and facile approach at room temperature, where the redox centers of copper oxide nanoarchitectures are tuned via facet engineering, and then they are deposited on the graphene paper surface through an electrostatic adsorption to enable homogeneous and highly dense distribution. Owing to the synergistic contribution of high electrocatalytic activity from the Cu mixed oxidation states and abundant catalytically active facets of Cu2O-CuO EHPs and high electrical conductivity of the graphene paper electrode substrate, the resultant nanohybrid paper electrode has exhibited superb electrochemical sensing properties for H2S with a wide linear range up to 352 µM and an extremely low detection limit (LOD) of 0.1 nM with a signal-to-noise ratio of 3 (S/N = 3), as well as high sensitivity, stability, and selectivity. Furthermore, taking advantage of the good biocompatibility and mechanical flexibility, the electrochemical sensing platform based on the proposed electrode has been applied in the sensitive detection of SRB in environmental samples through the sensing of sulfide from SRB, which holds great promise for on-site and online corrosion and environmental monitoring.


Asunto(s)
Técnicas Biosensibles , Grafito , Cobre/química , Técnicas Electroquímicas , Electrodos , Grafito/química , Oxidación-Reducción , Óxidos/química , Sulfuros
10.
Talanta ; 242: 123314, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35182839

RESUMEN

Duplex specific nuclease (DSN) that can precisely cleave DNA portion in double-stranded DNA or DNA-RNA hybrid has engrossed immense attention owing to its great potential in emerging bioanalytical applications. Here, we present a novel approach to extend DSN sensing application by coupling RNA aptamer. Specially designed RNA ligand sequences are used to capture the target and simultaneously provide complementary sequences of DNA for DSN aided fluorescent signal enhancement. A clotting enzyme, thrombin, has been used as a model analyte. One RNA aptamer combined with the target molecule can generate fluorescent signals through cleavage of hybridized TaqMan DNA probe (P2) by DSN. The proposed assay has achieved the lowest detection limit of 0.039 pM. The assay has been applied for real-time detection of thrombin release from live cells and other biotic media for early disease diagnosis. The developed method is versatile and can detect various other targets by choosing the relevant aptamer and probe sequences. This method is promising to be applied to medical diagnosis, biosensing, food safety, environmental monitoring, and other fields.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Biosensibles/métodos , ADN , Sondas de ADN , Endonucleasas , Límite de Detección , Trombina
11.
J Hazard Mater ; 426: 128133, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34968843

RESUMEN

The metal organic frameworks (MOFs) with tunable composition, modified structure, and morphologically controlled nanoarchitectures are quite imperative to improve the electrochemical (EC) performances of sensing platforms. Herein, EC control over the fabrication of HKUST-1 (Cu-MOFs) nanocrystals is achieved via anodic-induced electrodeposition approach following the mixing of Cu2+ salt precursor in the vicinity of benzene-1,3,5-tricarboxylate (BTC3-) ligands. The problem of controlled mass transfer and slow dispersal of MOFs is resolved by EC deposition of pyramidal-octagonal MOFs on a highly conductive and flexible carbon substrate (activated carbon cloth, ACC) wrapped with rGO layers (ACC-rGO@Cu(BTC). Further, α-MnO2 is integrated on ACC-rGO@Cu(BTC) to achieve the synergistic effect of ternary structure interfaces. The novel ACC-rGO@Cu(BTC)@MnO2 based flexible electrode exhibits striking EC performance toward non-enzymatic sensing of acetylcholine (ACh) including wide linear range (0.1 µM - 3 mM), lowest detection limit (5 nM, S/N = 3), high selectivity, and long-term stability. Moreover, the developed sensing system has been applied for real-time detection of ACh efflux released from three different cell lines and biological matrices. Our work unlocks a new prospect of precisely structured MOFs with extensive functionalities and scaled-up fabrication methods via selection of nanoscale reaction centers to develop flexible sensing devices.


Asunto(s)
Estructuras Metalorgánicas , Acetilcolina , Cobre , Técnicas Electroquímicas , Electrodos , Compuestos de Manganeso , Óxidos
12.
Chem Rec ; 22(1): e202100166, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34415677

RESUMEN

Sulfate reducing bacteria (SRB) are blamed as main culprits in triggering huge corrosion damages by microbiologically influenced corrosion. They obtained their energy through enzymatic conversion of sulfates to sulfides which are highly corrosive. However, conventional SRB detection methods are complex, time-consuming and are not enough sensitive for reliable detection. The advanced biosensing technologies capable of overcoming the aforementioned drawbacks are in demand. So, nanomaterials being economical, environmental friendly and showing good electrocatalytic properties are promising candidates for electrochemical detection of SRB as compared with antibody based assays. Here, we summarize the recent advances in the detection of SRB using different techniques such as PCR, UV visible method, fluorometric method, immunosensors, electrochemical sensors and photoelectrochemical sensors. We also discuss the SRB detection based on determination of sulfide, typical metabolic product of SRB.


Asunto(s)
Técnicas Biosensibles , Desulfovibrio , Corrosión , Inmunoensayo , Oxidación-Reducción , Sulfatos
13.
J Hazard Mater ; 422: 126907, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34418835

RESUMEN

Morphological evolution of layered double hydroxides (LDHs) with preferential crystal facets has appealed gigantic attention of research community. Herein, we prepare hierarchical hybrid material by structurally integrating fusiform-like CuNiAl LDHs petals on conductive backbone of CF (CF@CuNiAl LDHs) and investigate electrocatalytic behavior in nitrate reduction over a potential window of -0.7 V to +0.7 V. The CF@CuNiAl LDHs electrode exhibits remarkable electrocatalytic aptitude in nitrate sensing including broad linear ranges of 5 nM to 40 µM and 75 µM to 2.4 mM with lowest detection limit of 0.02 nM (S/N = 3). The sensor shows sensitivity of 830.5 ±â€¯1.84 µA mM1- cm2- and response time within 3 s. Owing to synergistic collaboration of improved electron transfer kinetics, specific fusiform-like morphology, presence of more catalytically active {111} facets and superb catalytic activity of LDHs, CF@CuNiAl LDHs electrode has outperformed as electrochemical sensor. Encouraged from incredible performance, CF@CuNiAl LDHs flexible electrode has been applied in real-time in-vitro detection of nitrite oxidizing bacteria (NOB) through the sensing of nitrate because NOB convert nitrite into nitrate by characteristic metabolic process to obtain their energy. Further, CF@CuNiAl LDHs based sensing podium has also been employed in in-vitro detection of nitrates from mineral water, tap water and Pepsi drink.


Asunto(s)
Nitratos , Nitritos , Bacterias , Biomarcadores , Fibra de Carbono , Cobre , Hidróxidos , Níquel , Oxidación-Reducción
14.
ACS Appl Mater Interfaces ; 13(27): 31462-31473, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34196524

RESUMEN

In this study, Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been fabricated by a one-step hydrothermal method and used in the voltammetric detection of resorcinol (RS). The poor conductivity of MOFs in the field of electrochemical sensing is still a major challenge. A series of Cu-MOF/rGO/CuO/α-MnO2 nanocomposites have been synthesized with varying fractions of rGO and with a fixed amount of α-MnO2 via a facile method. These nanocomposites are well characterized using some sophisticated characterization techniques. The as-prepared nanohybrids have strongly promoted the redox reactions at the electrode surface due to their synergistic effects of improved conductivity, high electrocatalytic activity, an enlarged specific surface area, and a plethora of nanoscale level interfacial collaborations. The electrode modified with Cu-MOF/rGO/CuO/α-MnO2 has revealed superior electrochemical properties demonstrating linear differential pulse voltammetry (DPV) responses from a 0.2 to 22 µM RS concentration range (R2 = 0.999). The overall results of this sensing podium have shown excellent stability, good recovery, and a low detection limit of 0.2 µM. With excellent sensing performance achieved, the practicability of the sensor has been evaluated to detect RS in commercial hair color samples as well as in tap water and river water samples. Therefore, we envision that our hybrid nanostructures synthesized by the structural integration strategy will open new horizons in material synthesis and biosensing platforms.

15.
ACS Appl Mater Interfaces ; 13(5): 6023-6033, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33496593

RESUMEN

The specific monitoring of serotonin (ST) has provoked massive interest in therapeutic and biological science since it has been recognized as the third most significant endogenous gastrointestinal neurotransmitter. Hence, there is a great need to develop a sensitive and low-cost sensing platform for the detection of a clinically relevant ST level in biological matrices. Herein, we develop a simple two-step approach for an ultrasensitive electrochemical (EC) sensor with the Cu2O metal oxide (MO)-incorporated CNT core that has been further deposited with a transitional amount of platinum nanoparticles (Pt NPs). We presented, for the first time, the deposition of Pt NPs on the (CNTs-Cu2O-CuO) nanopetal composite via the galvanic replacement method, where copper not only acts as a reductant but a sacrificial template as well. The electrocatalytic aptitude of the fabricated EC sensing platform has been assessed for the sensitive detection of ST as a proficient biomarker in early disease diagnostics. The synergy of improved active surface area, remarkable conductivity, polarization effect induced by Pt NPs on CNTs-Cu2O-CuO nanopetals, fast electron transfer, and mixed-valence states of copper boost up the redox processes at the electrode-analyte junction. The CNTs-Cu2O-CuO@Pt-modified electrode has unveiled outstanding electrocatalytic capabilities toward ST oxidation in terms of a low detection limit of 3 nM (S/N = 3), wide linear concentration range, reproducibility, and incredible durability. Owing to the amazing proficiency, the proposed EC sensor based on the CNTs-Cu2O-CuO@Pt heterostructure has been applied for ST detection in biotic fluids and real-time tracking of ST efflux released from various cell lines as early disease diagnostic approaches.


Asunto(s)
Técnicas Biosensibles , Cobre/química , Técnicas Electroquímicas , Nanotubos de Carbono/química , Platino (Metal)/química , Serotonina/análisis , Humanos , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
16.
Curr Opin Colloid Interface Sci ; 52: 101418, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33495685

RESUMEN

In this ongoing theme of coronavirus disease 2019 (COVID-19) pandemic, highly sensitive analytical testing platforms are extremely necessary to detect SARS-CoV-2 RNA and antiviral antibodies. To limit the viral spread, prompt and precise diagnosis is crucial to facilitate treatment and ensure effective isolation. Accurate detection of antibodies (IgG and IgM) is imperative to understand the prevalence of SARS-CoV-2 in public and to inspect the proportion of immune individuals. In this review, we demonstrate and evaluate some tests that have been used commonly to detect SARS-CoV-2. These include nucleic acid and serological tests for the detection of SARS-CoV-2 RNA and specific antibodies in infected people. Moreover, the vitality of biosensing technologies emphasizing on optical and electrochemical biosensors toward the detection of SARS-CoV-2 has also been discussed here. The early diagnosis of COVID-19 based on detection of reactive oxygen species overproduction because of virus-induced dysfunctioning of lung cells has also been highlighted.

17.
Curr Res Chem Biol ; 1: 100001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35814867

RESUMEN

The recent epidemic of novel coronavirus (COVID-19) has turned out to be a huge public health concern owing to its fast transmission. Rapid and cost-effective detection of SARS-CoV-2 is crucial to classify diseased individuals. Serological examination based on antibody chromatography as a substitute to RT-PCR provides inadequate help owing to sophisticated personnel, false-positive results, special equipment and high cost. Biosensing techniques provide sensitive and specific detection, recognition and quantification of pathogens. Herein, after an introduction, we review potential electrochemical (EC) biosensors for COVID-19 diagnosis, emphasizing plasmonic, optical, colorimetric and aptamer-based sensors with a special focus on EC biosensors and point-of-care (POC) diagnostic methods. We have conferred the working principle of these biosensors, EC performance in terms of particular analytical figures of merit and their real-time applications in biological matrices. Lastly, we have described briefly the inactivation of SARS-CoV-2 by EC oxidation. In the end, we have concluded this review by clearing up the strengths and weaknesses of EC sensors and future directions. Advancement in research and technology would be our unsurpassed weapons in the fight against COVID-19 and preventing imminent pandemics.

18.
Curr Pharm Des ; 27(9): 1170-1184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33280586

RESUMEN

BACKGROUND: The spread of COVID-19 has become a growing cause of mortalities over the globe since its major outbreak in December 2019. The scientific and medical communities are rallying to study different strains and probable mutations to develop more rapid and reliable molecular diagnostic tests and possible therapeutic approaches for SARS-CoV-2. INTRODUCTION: In the first section, following the introductory part, we shed light on structural and pathogenic features of SARS-CoV-2 and risk factors related to age, gender, neonatal and comorbidities. The next section summarizes the current diagnostic tests for COVID-19, such as nucleic acid and computed tomography (CT) techniques, with further emphasis on emerging diagnostic approaches for COVID-19. METHODS: Further, we also review the ongoing therapeutic practices which can block virus-host interaction, cease viral proliferation or inhibit hyperbolic host immune response with subsections on drug therapy, cell therapy, immunotherapy and herbal medicines that are being used for the possible treatment of patients. RESULTS AND CONCLUSION: Among the different promising drugs, remdesivir, by inhibiting the RNA-dependent RNA-Polymerase activity, gives much better results, including declined viral load and quick lung tissue recovery. The long-lasting repercussions of COVID-19 have also been discussed at the end. In this review, we have also critically discussed the progress in several vaccines that are under development.


Asunto(s)
COVID-19 , Humanos , Recién Nacido , Técnicas de Diagnóstico Molecular , SARS-CoV-2
19.
Curr Opin Electrochem ; 23: 174-184, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32984642

RESUMEN

Herein, we have summarized and argued about biomarkers and indicators used for the detection of severe acute respiratory syndrome coronavirus 2. Antibody detection methods are not considered suitable to screen individuals at early stages and asymptomatic cases. The diagnosis of coronavirus disease 2019 using biomarkers and indicators at point-of-care level is much crucial. Therefore, it is urgently needed to develop rapid and sensitive detection methods which can target antigens. We have critically elaborated key role of biosensors to cope the outbreak situation. In this review, the importance of biosensors including electrochemical, surface enhanced Raman scattering, field-effect transistor, and surface plasmon resonance biosensors in the detection of severe acute respiratory syndrome coronavirus 2 has been underscored. Finally, we have outlined pros and cons of diagnostic approaches and future directions.

20.
Nanoscale ; 12(16): 9014-9023, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32270807

RESUMEN

The development of crystal-facet metal oxide heterostructures has been of great interest owing to their rational design and multifunctional properties at the nanoscale level. Herein, we report a facile solution-based method for the synthesis of single-crystal Cu2O nanostructures (i.e. Cu2O-CuO) as a core. Graphene quantum dots (GQDs) with varying concentrations are fabricated on the surface of Cu2O extended hexapods (EHPs) in ethanol solution at room temperature via self-assembly, where copper acts as a sacrificial model and a stabilizer as well. The Cu2O crystals displayed a good sensing activity toward BPA oxidation owing to their high energy facets, dangling bonds and great proportion of surface copper atoms. Structural, morphological, chemical and vibrational investigations were performed in detail, presenting high crystallinity of hybrid nanocomposites and Cu2O-CuO heterojunction positions along with the growth of GQDs on the core of Cu2O-CuO crystals. The electrochemical sensing performance of the as-fabricated Cu2O-CuO@GQD EHPs was monitored for the determination of bisphenol A (BPA) as an early diagnostic marker and environmental contaminant. The synergistic effects of the boosted surface area, exposed Cu {111} crystallographic planes and mixed copper valences enhance redox reaction kinetics by increasing the electron shuttling rate at the electrode-analyte junction. Benefitting from the improved electrocatalytic activity for BPA oxidation, the electrochemical sensor displayed the lowest limit of detection (≤1 nM), good chemical stability, a broad linear range (2 nM-11 mM), and high sensitivity (636 µA mM-1 cm-2). The Cu2O-CuO@GQD EHP-based sensing platform was used for BPA detection in water and human serum samples. We have also constructed a pioneering electrochemical sensing platform for BPA detection in live cells, which might be used as a marker for early disease diagnosis.


Asunto(s)
Compuestos de Bencidrilo/análisis , Técnicas Biosensibles/métodos , Cobre/química , Grafito/química , Fenoles/análisis , Puntos Cuánticos/química , Técnicas Electroquímicas , Electrodos , Células HeLa , Humanos , Límite de Detección , Microscopía Fluorescente , Oxidación-Reducción , Óxidos/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA