Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
J Appl Physiol (1985) ; 136(4): 949-953, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38420678

Decompression sickness (DCS) is caused by gaseous nitrogen dissolved in tissues forming bubbles during decompression. To date, no method exists to identify nitrogen within tissues, but with advances in positron-emission tomography (PET) technology, it may be possible to track gaseous radionuclides into tissues. We aimed to develop a method to track nitrogen movement in vivo and under hyperbaric pressure that could then be used to further our understanding of DCS using nitrogen-13 (13N2). A single anesthetized female Sprague-Dawley rat was exposed to 625 kPa, composed of air, isoflurane, and 13N2 for 10 min. The PET scanner recorded 13N2 during the hyperbaric exposure with energy windows of 250-750 keV. The PET showed an increase in 13N2 concentration in the lung, heart, and abdominal regions, which all reached a plateau after ∼4 min. This showed that it is possible to gain noninvasive in vivo measurements of nitrogen kinetics through the body while at hyperbaric pressures. Tissue samples showed radioactivity above background levels in the blood, brain, liver, femur, and thigh muscle when assessed using a γ counter. The method can be used to evaluate an array of challenges to our understanding of decompression physiology by quantifying nitrogen load through γ counts of 13N2, and signal intensity of the PET. Further development of the method will improve the specificity of the measured outcomes, and enable it to be used with larger mammals, including humans.NEW & NOTEWORTHY This article describes a method for the in vivo quantification and tracking of nitrogen through the mammalian body whilst exposed to hyperbaric pressure. The method has the potential to further our understanding of decompression sickness, and quantitatively evaluate the effectiveness of both the treatment and prevention of decompression sickness.


Decompression Sickness , Diving , Hyperbaric Oxygenation , Nitrogen Radioisotopes , Humans , Rats , Animals , Female , Nitrogen , Decompression Sickness/diagnostic imaging , Diving/physiology , Rats, Sprague-Dawley , Decompression/adverse effects , Gases , Hyperbaric Oxygenation/methods , Positron-Emission Tomography , Mammals
2.
PLoS One ; 19(1): e0294611, 2024.
Article En | MEDLINE | ID: mdl-38252649

BACKGROUND: Breathing pure oxygen causes nitrogen washout from tissues, a method commonly deployed to prevent decompression sickness from hypobaric exposure. Theoretically prebreathing oxygen increases the capacity for nitrogen uptake and potentially limits supersaturation during dives of short duration. We aimed to use 13N2, a radioactive nitrogen isotope, to quantify tissue nitrogen following normobaric and hyperbaric exposures. METHODS: Twenty Sprague Dawley rats were divided in 4 conditions; normobaric prebreathe, normobaric control, hyperbaric prebreathe, hyperbaric control. Prebreathed rats breathed oxygen for 1 h prior to the experiment whilst controls breathed air. Normobaric rats breathed air containing 13N2 at 100 kPa for 30 min, whereas hyperbaric rats breathed 13N2 at 700 kPa before being decompressed and sedated using air-isoflurane (without 13N2 for a few minutes). After euthanization, blood, brain, liver, femur and thigh muscle were analyzed by gamma counting. RESULTS: At normobaria prebreathing oxygen resulted in higher absolute nitrogen counts in blood (p = .034), as well as higher normalized counts in both the liver and muscle (p = .034). However, following hyperbaric exposure no differences were observed between conditions for any organ (p>.344). Both bone and muscle showed higher normalized counts after hyperbaria compared to normobaria. CONCLUSIONS: Oxygen prebreathing caused nitrogen elimination in normobaria that led to a larger "sink" and uptake of 13N2. The lack of difference between conditions in hyperbaria could be due to the duration and depth of the dive mitigating the effect of prebreathing. In the hyperbaric conditions the lower counts were likely due to off-gassing of nitrogen during the sedation procedure, suggest a few minutes was enough to off-gas in rodents. The higher normalized counts under hyperbaria in bone and muscle likely relate to these tissues being slower to on and off-gas nitrogen. Future experiments could include shorter dives and euthanization while breathing 13N2 to prevent off-gassing.


Gases , Oxygen , Rats , Animals , Rats, Sprague-Dawley , Muscles , Nitrogen
3.
Laryngoscope ; 134(3): 1299-1307, 2024 Mar.
Article En | MEDLINE | ID: mdl-37668315

OBJECTIVE: With the shift toward utilization of sentinel lymph node biopsy (SLNB) in oral cavity cancer, improved techniques for intraoperative sentinel node identification are needed. This study investigates the feasibility of fluorescently labeled tilmanoscept in SLNB in an oral cancer rabbit model. METHODS: An animal study was designed using 21 healthy male New Zealand rabbits. Gallium-68-labeled tilmanocept labeled with IRDye800CW was injected submucosally into the buccal mucosa (n = 6) or lateral tongue (n = 7) followed by PET imaging. One hour after injection, SLNB was performed using fluorescence imaging followed by a bilateral neck dissection and sampling of non-nodal surrounding tissue. All tissues were measured for radioactivity and fluorescence. In addition, eight rabbits were injected with delayed SLNB performed 48 h after injection. RESULTS: Buccal injections all had ipsilateral SLN drainage and tongue injections exhibited 18.2% contralateral drainage. An average of 1.9 ± 1.0 SLN (range 1-5) were identified. In addition, an average of 16.9 ± 3.3 non-sentinel lymph nodes were removed per animal. SLNs had an average of 0.69 ± 0.60 percent-of-injected dose (%ID) compared with non-sentinel nodes with 0.012 ± 0.025 %ID and surrounding tissue with 0.0067 ± 0.015 %ID. There was 98.0% agreement between sentinel lymph nodes identified using fluorescence compared to radioactivity with Cohen's kappa coefficient of 0.879. In 48-h delayed SLNB, results were consistent with 97.8% agreement with radioactivity and Cohen's Kappa coefficient of 0.884. Fluorescence identified additional lymph nodes that were not identified by radioactivity, and with one false negative. CONCLUSION: Fluorescent-labeled Tc-99 m-tilmanocept represents a highly accurate adjunct to enhance SLNB for oral cavity cancer. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1299-1307, 2024.


Mouth Neoplasms , Sentinel Lymph Node , Male , Animals , Rabbits , Sentinel Lymph Node Biopsy/methods , Lymph Nodes/pathology , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/surgery , Sentinel Lymph Node/pathology , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/surgery , Mouth Neoplasms/pathology
4.
Ergonomics ; 66(1): 49-60, 2023 Jan.
Article En | MEDLINE | ID: mdl-35332846

To mitigate the effects of heat during operations in hot environments, military personnel will likely benefit from heat acclimation (HA) conducted prior to deployment. Using post-exercise, passive heating, 25 participants completed a 5 d HA regime in sauna (70 °C, 18% RH) or hot-water immersion (HWI) (40 °C) for ≤40 min, preceded and followed by a heat stress test (1-h walking at 5 km.h-1 in 33 °C, 77% RH in military uniform (20 kg) before an incremental ramp to exhaustion). Fifteen completed both regimes in a randomised, cross-over manner. While performance did not significantly improve (+14%, [-1, 29], p = .079), beneficial adaptations were observed for mean exercising core temperature (-0.2 °C, [-0.2, -0.2], p <.001), skin temperature (-0.2 °C, [-0.2, -0.2], p = 035) and heart rate (-8 bpm, [-6, -10], p<.001) in both conditions. Post-exercise, passive HA of either modality may benefit military units operating in the heat.Practitioner summary: Strategies are required to prevent health and performance impairments during military operations upon arrival in hot environments. Using a randomised, cross-over design, participants completed five-day passive, post-exercise heat acclimation using sauna or hot-water immersion. Both regimes elicited beneficial albeit modest heat adaptations.Abbreviations: HA: heat acclimation; HST: heat stress test; HWI: hot-water immersion; RH: relative humidity.


Military Personnel , Steam Bath , Humans , Acclimatization/physiology , Heart Rate , Hot Temperature , Immersion , Water , Cross-Over Studies
5.
Eur J Appl Physiol ; 121(4): 1061-1071, 2021 Apr.
Article En | MEDLINE | ID: mdl-33426575

PURPOSE: Cognition can be impaired during exercise in the heat, potentially contributing to military casualties. To our knowledge, the independent role of elevated core temperature during exercise has not been determined. The aim of the current study was to evaluate effects of elevated core temperature on cognition during physically encumbering, heated exercise, and to determine whether the perceptual cooling effects of menthol preserves cognition. METHODS: Eight participants complete three trials in randomised order: one normothermic (CON) and two with elevated (38.5°C) core temperature, induced by prior immersion in neutral versus hot water The CON trial and one hot trial (HOT) used a water mouth-rinse following each cognitive task of the trial, (HOT) while the other used a menthol mouth-rinse (MENT). Participants walked in humid heat (33°C, 75% relative humidity) in military clothing, completing a cognitive battery of reaction time, perceptual processing, working memory, executive function, cognitive flexibility, vigilance, and declarative memory. RESULTS: No differences in cognitive performance were observed between any conditions. Near-infrared spectroscopy showed greater oxygenated haemoglobin tissue content in HOT and MENT compared to CON (ΔO2Hb-deO2Hb: 2.3 ± 4.5 µM, p < .024), and lower deoxygenated haemoglobin in MENT than in CON or HOT (p = .017), suggesting higher brain metabolism during the more stressful conditions. CONCLUSION: Moderately elevated core (38.5°C) and skin temperature does not appear to impair cognitive performance during exercise despite mildly elevated cerebral metabolism. The effects of menthol remain undetermined due to the lack of heat-mediated cognitive impairment.


Cognition , Exercise , Hot Temperature/adverse effects , Hyperthermia/physiopathology , Adult , Body Temperature , Executive Function , Female , Humans , Humidity/adverse effects , Hyperthermia/drug therapy , Male , Memory , Menthol/administration & dosage , Menthol/therapeutic use , Military Personnel , Mouthwashes
6.
Mil Med Res ; 7(1): 58, 2020 11 29.
Article En | MEDLINE | ID: mdl-33248459

Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.


Acclimatization/physiology , Military Personnel/statistics & numerical data , Heart Rate/physiology , Hot Temperature/adverse effects , Humans , Oxygen Consumption/physiology , United States , Warfare/statistics & numerical data , Warfare/trends
7.
Diving Hyperb Med ; 49(4): 298-303, 2019 Dec 20.
Article En | MEDLINE | ID: mdl-31828749

INTRODUCTION: Scrubbers in closed-circuit rebreather systems remove carbon dioxide (CO2) from the exhaled gas. In an attempt to be more user-friendly and efficient, the ExtendAir® non-granular, pre-formed scrubber cartridge has been developed. The cartridge manufacturer claims twice the absorptive capacity of granular CO2 absorbent, with less variability, lower work of breathing, and reduced exposure to caustic chemicals after a flood. To our knowledge there are no published data that support these claims. METHODS: Cartridge (ExtendAir®) and granular (Sofnolime® 797) scrubbers of equal volume and mass were tested five times in an immersed and mechanically ventilated O2ptima rebreather. Exercise protocols involving staged (90 minutes 6 MET, followed by 2 MET) and continuous (6 MET) activity were simulated. We compared: duration until breakthrough, and variability in duration, to endpoints of 1.0 kPa and 0.5 kPa inspired partial pressure of CO2; inspiratory-expiratory pressure difference in the breathing loop; and pH of eluted water after a 5 minute flood. RESULTS: Mean difference in scrubber endurance was 0-20% in favour of the ExtendAir® cartridge, depending on exercise protocol and chosen CO2 endpoint. There were no meaningful differences in endpoint variability, inspiratory-expiratory pressure in the loop, or pH in the eluted water after a flood. CONCLUSIONS: Cartridge and granular scrubbers were very similar in duration, variability, ventilation pressures, and causticity after a flood. Our findings were not consistent with claims of substantial superiority for the ExtendAir® cartridge.


Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Diving , Humans , Partial Pressure , Respiration , Respiratory Protective Devices , Water
8.
Plant Cell ; 19(4): 1403-14, 2007 Apr.
Article En | MEDLINE | ID: mdl-17416732

SIZ1 is a SUMO E3 ligase that facilitates conjugation of SUMO to protein substrates. siz1-2 and siz1-3 T-DNA insertion alleles that caused freezing and chilling sensitivities were complemented genetically by expressing SIZ1, indicating that the SIZ1 is a controller of low temperature adaptation in plants. Cold-induced expression of CBF/DREB1, particularly of CBF3/DREB1A, and of the regulon genes was repressed by siz1. siz1 did not affect expression of ICE1, which encodes a MYC transcription factor that is a controller of CBF3/DREB1A. A K393R substitution in ICE1 [ICE1(K393R)] blocked SIZ1-mediated sumoylation in vitro and in protoplasts identifying the K393 residue as the principal site of SUMO conjugation. SIZ1-dependent sumoylation of ICE1 in protoplasts was moderately induced by cold. Sumoylation of recombinant ICE1 reduced polyubiquitination of the protein in vitro. ICE1(K393R) expression in wild-type plants repressed cold-induced CBF3/DREB1A expression and increased freezing sensitivity. Furthermore, expression of ICE1(K393R) induced transcript accumulation of MYB15, which encodes a MYB transcription factor that is a negative regulator of CBF/DREB1. SIZ1-dependent sumoylation of ICE1 may activate and/or stabilize the protein, facilitating expression of CBF3/DREB1A and repression of MYB15, leading to low temperature tolerance.


Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Ligases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Freezing , Ligases/genetics , Molecular Sequence Data , Plants, Genetically Modified/metabolism , Protoplasts/metabolism , Recombinant Proteins/metabolism , Ubiquitin/metabolism
9.
Plant Physiol ; 135(3): 1654-65, 2004 Jul.
Article En | MEDLINE | ID: mdl-15247394

The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance.


Cornus/classification , Plant Proteins/physiology , Cornus/physiology , Desiccation , Freezing , Heat-Shock Proteins/physiology , Phylogeny
10.
Tree Physiol ; 23(11): 759-67, 2003 Aug.
Article En | MEDLINE | ID: mdl-12839729

Dehydrins are proteins associated with conditions affecting the water status of plant cells, such as drought, salinity, freezing and seed maturation. Although the function of dehydrins remains unknown, it is hypothesized that they stabilize membranes and macromolecules during cellular dehydration. Red-osier dogwood (Cornus sericea L.), an extremely freeze-tolerant woody plant, accumulates dehydrin-like proteins during cold acclimation and the presence of these proteins is correlated with increased freeze tolerance (Karlson 2001, Sarnighausen et al. 2002, Karlson et al. 2003). Our objective was to determine the location of dehydrins in cold-acclimated C. sericea stems in an effort to provide insight into their potential role in the freeze tolerance of this extremely cold hardy species. Abundant labeling was observed in the nucleus and cytoplasm of cold-acclimated C. sericea stem cells. In addition, labeling was observed in association with plasmodesmata of cold-acclimated vascular cambium cells. The unique association of dehydrin-like proteins with plasmodesmata has not been reported previously.


Cornus/physiology , Plant Proteins/physiology , Plasmodesmata/physiology , Trees/physiology , Freezing
11.
Plant Cell Physiol ; 44(1): 25-34, 2003 Jan.
Article En | MEDLINE | ID: mdl-12552144

A predominant 24-kD dehydrin-like protein was previously found to fluctuate seasonally within red-osier dogwood (Cornus sericea L.) stems. The current study attempted to determine what environmental cues triggered the accumulation of the 24-kD protein and to assess its potential role in winter survival. Controlled photoperiod and field studies confirmed that photoperiod regulates a reduction of stem water content (SWC), freeze-tolerance enhancement and accumulation of the 24-kD protein. Diverse climatic ecotypes, which are known to respond to different critical photoperiods, displayed differential reduction of SWC and accumulation of the 24-kD protein. A time-course study confirmed that prolonged exposure to short days is essential for SWC reduction, 24-kD protein accumulation, and freeze-tolerance enhancement. Water deficit induced 24-kD protein accumulation and enhanced freeze-tolerance under long-day conditions. In all instances, freeze-tolerance enhancement and 24-kD protein accumulation was preceded by a reduction of SWC. These results are consistent with the hypothesis that C. sericea responds to decreasing photoperiod, which triggers a reduction in SWC. Reduced SWC in turn may trigger the accumulation of the 24-kD protein and a parallel increase in freeze-tolerance.


Acclimatization/physiology , Cornus/physiology , Photoperiod , Plant Proteins/metabolism , Cornus/drug effects , Cornus/radiation effects , Freezing , Plant Roots/drug effects , Plant Roots/physiology , Plant Roots/radiation effects , Seasons , Water/pharmacology
12.
Tree Physiol ; 22(6): 423-30, 2002 Apr.
Article En | MEDLINE | ID: mdl-11960767

Previously, we showed that an apparent cell wall-plasma membrane interaction in xylem ray parenchyma differed between cold acclimated and non-acclimated red-osier dogwood (Cornus sericea L.) (Ristic and Ashworth 1994). For the present study, a calcium chloride extraction method was used to identify cell-wall-associated xylem proteins that accumulated during periods of cold acclimation. A 24-kDa protein represented the predominant protein in both total protein and CaCl2 extracts during cold acclimation of field-grown plants. Two-dimensional gel electrophoresis separated the 24-kDa protein into four basic isoforms. The most abundant and basic isoform had a high glycine content. In-gel digestion of this basic 24-kDa isoform generated three partial peptide fragments, of which one exhibited homology to the dehydrin protein family. An anti-dehydrin polyclonal antibody cross-reacted with the 24-kDa protein, providing further evidence that this protein is related to dehydrins. The 24-kDa protein began to accumulate in late August, reached a maximum in midwinter, declined during the spring months and was absent in early summer.


Cornus/physiology , Trees/physiology , Acclimatization/physiology , Amino Acid Sequence , Amino Acids/analysis , Calcium Chloride , Cold Temperature , Cornus/genetics , Electrophoresis, Polyacrylamide Gel , Immunoblotting , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/physiology , Seasons , Trees/genetics
13.
Planta ; 214(5): 798-805, 2002 Mar.
Article En | MEDLINE | ID: mdl-11882950

Low-temperature scanning-electron microscopy was used to study the freezing of leaves of five species that have no resistance to freezing: bean (Phaseolus vulgaris L.), tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum L.), cucumber (Cucumis sativus L.), and corn (Zea mays L.). In the leaves of the four dicotyledonous species, ice was extracellular and the cells of all tissues were collapsed. In contrast, in maize leaves ice was extracellular in the mesophyll, and these cells were collapsed, but the epidermal and bundle-sheath cells apparently retained their original shapes and volume. It is concluded that the leaves of the freezing-sensitive dicotyledonous species tested were killed by cellular dehydration induced by extracellular freezing, and not by intracellular freezing. Freezing injury in maize leaves apparently resulted from a combination of freezing-induced cellular dehydration of some cells and intracellular ice formation in epidermal and bundle-sheath cells.


Magnoliopsida/physiology , Plant Leaves/physiology , Cucumis sativus/cytology , Cucumis sativus/physiology , Extracellular Space/physiology , Freezing , Ice/adverse effects , Solanum lycopersicum/cytology , Solanum lycopersicum/physiology , Magnoliopsida/cytology , Phaseolus/cytology , Phaseolus/physiology , Plant Epidermis/cytology , Plant Epidermis/physiology , Plant Leaves/cytology , Solanaceae/cytology , Solanaceae/physiology , Nicotiana/cytology , Nicotiana/physiology , Zea mays/cytology , Zea mays/physiology
...