Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Exp Med ; 221(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38442272

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Ischemic Stroke , Stroke , Animals , Mice , Vascular Endothelial Growth Factor C , Neuroinflammatory Diseases , Drainage
2.
J Leukoc Biol ; 110(4): 611-612, 2021 10.
Article En | MEDLINE | ID: mdl-34197686

Discussion on GABA as a key player in mediating neuroimmune communications between NK cells and DC.


Cell Communication , Dendritic Cells/cytology , Killer Cells, Natural/cytology , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Humans , Mice , Signal Transduction
3.
Stroke ; 52(5): 1798-1808, 2021 05.
Article En | MEDLINE | ID: mdl-33840225

Background and Purpose: Brain tissue-resident microglia and monocyte-derived macrophages (MDMs) are innate immune cells that contribute to the inflammatory response, phagocytosis of debris, and tissue repair after injury. We have previously reported that both microglia and MDMs transition from proinflammatory to reparative phenotypes over days after an intracerebral hemorrhage (ICH). However, their individual functional properties in the brain remain largely unknown. Here we characterized the differences between microglia and MDMs and further elucidate their distinct activation states and functional contributions to the pathophysiology and recovery after ICH. Methods: Autologous blood injection was used to model ICH in mice. Longitudinal transcriptomic analyses on isolated microglia and MDMs from mice at days 1, 3, 7 and 10 after ICH and naive controls identified core transcriptional programs that distinguish these cells. Imaging flow cytometry and in vivo phagocytosis assays were used to study phagocytic ability of microglia and MDMs. Antigen presentation was evaluated by ovalbumin-OTII CD4 T-cell proliferation assays with bone marrow­derived macrophages and primary microglia cultures. Results: MDMs had higher phagocytic activity and higher erythrophagocytosis in the ICH brain. Differential gene expression revealed distinct transcriptional signatures in the MDMs and microglia after ICH. MDMs had higher expression of MHCII (major histocompatibility complex class II) genes than microglia at all time points and greater ability to induce antigen-specific T-cell proliferation. Conclusions: The different ontogeny of microglia and MDMs lead to divergent responses and functions in the inflamed brain as these 2 cell populations differ in phagocytic functions and antigen-presenting capabilities in the brain after ICH.


Brain/metabolism , Intracranial Hemorrhages/metabolism , Macrophages/metabolism , Phagocytosis/physiology , Animals , Cell Proliferation/physiology , Disease Models, Animal , Mice , Microglia/metabolism
4.
Sci Immunol ; 6(56)2021 02 19.
Article En | MEDLINE | ID: mdl-33891558

Opportunities to interrogate the immune responses in the injured tissue of living patients suffering from acute sterile injuries such as stroke and heart attack are limited. We leveraged a clinical trial of minimally invasive neurosurgery for patients with intracerebral hemorrhage (ICH), a severely disabling subtype of stroke, to investigate the dynamics of inflammation at the site of brain injury over time. Longitudinal transcriptional profiling of CD14+ monocytes/macrophages and neutrophils from hematomas of patients with ICH revealed that the myeloid response to ICH within the hematoma is distinct from that in the blood and occurs in stages conserved across the patient cohort. Initially, hematoma myeloid cells expressed a robust anabolic proinflammatory profile characterized by activation of hypoxia-inducible factors (HIFs) and expression of genes encoding immune factors and glycolysis. Subsequently, inflammatory gene expression decreased over time, whereas anti-inflammatory circuits were maintained and phagocytic and antioxidative pathways up-regulated. During this transition to immune resolution, glycolysis gene expression and levels of the potent proresolution lipid mediator prostaglandin E2 remained elevated in the hematoma, and unexpectedly, these elevations correlated with positive patient outcomes. Ex vivo activation of human macrophages by ICH-associated stimuli highlighted an important role for HIFs in production of both inflammatory and anti-inflammatory factors, including PGE2, which, in turn, augmented VEGF production. Our findings define the time course of myeloid activation in the human brain after ICH, revealing a conserved progression of immune responses from proinflammatory to proresolution states in humans after brain injury and identifying transcriptional programs associated with neurological recovery.


Brain/pathology , Cerebral Hemorrhage/complications , Neuroinflammatory Diseases/immunology , Adult , Aged , Brain/immunology , Cells, Cultured , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/pathology , Female , Healthy Volunteers , Hematoma , Humans , Longitudinal Studies , Macrophages/immunology , Male , Middle Aged , Neuroinflammatory Diseases/pathology , Neutrophils/immunology , Primary Cell Culture , RNA-Seq , Transcriptome/immunology
5.
JCI Insight ; 6(6)2021 03 22.
Article En | MEDLINE | ID: mdl-33749664

Intracerebral hemorrhage (ICH) is a devastating form of stroke with a high mortality rate and few treatment options. Discovery of therapeutic interventions has been slow given the challenges associated with studying acute injury in the human brain. Inflammation induced by exposure of brain tissue to blood appears to be a major part of brain tissue injury. Here, we longitudinally profiled blood and cerebral hematoma effluent from a patient enrolled in the Minimally Invasive Surgery with Thrombolysis in Intracerebral Hemorrhage Evacuation trial, offering a rare window into the local and systemic immune responses to acute brain injury. Using single-cell RNA-Seq (scRNA-Seq), this is the first report to our knowledge that characterized the local cellular response during ICH in the brain of a living patient at single-cell resolution. Our analysis revealed shifts in the activation states of myeloid and T cells in the brain over time, suggesting that leukocyte responses are dynamically reshaped by the hematoma microenvironment. Interestingly, the patient had an asymptomatic rebleed that our transcriptional data indicated occurred prior to detection by CT scan. This case highlights the rapid immune dynamics in the brain after ICH and suggests that sensitive methods such as scRNA-Seq would enable greater understanding of complex intracerebral events.


Adaptation, Physiological , Cerebral Hemorrhage/pathology , Leukocytes/pathology , Aged , Cerebral Hemorrhage/diagnostic imaging , Female , Genomics , Humans , Minimally Invasive Surgical Procedures , Tomography, X-Ray Computed
6.
Stroke ; 51(9): 2664-2673, 2020 09.
Article En | MEDLINE | ID: mdl-32755347

BACKGROUND: Anecdotal reports suggest fewer patients with stroke symptoms are presenting to hospitals during the coronavirus disease 2019 (COVID-19) pandemic. We quantify trends in stroke code calls and treatments at 3 Connecticut hospitals during the local emergence of COVID-19 and examine patient characteristics and stroke process measures at a Comprehensive Stroke Center (CSC) before and during the pandemic. METHODS: Stroke code activity was analyzed from January 1 to April 28, 2020, and corresponding dates in 2019. Piecewise linear regression and spline models identified when stroke codes in 2020 began to decline and when they fell below 2019 levels. Patient-level data were analyzed in February versus March and April 2020 at the CSC to identify differences in patient characteristics during the pandemic. RESULTS: A total of 822 stroke codes were activated at 3 hospitals from January 1 to April 28, 2020. The number of stroke codes/wk decreased by 12.8/wk from February 18 to March 16 (P=0.0360) with nadir of 39.6% of expected stroke codes called from March 10 to 16 (30% decrease in total stroke codes during the pandemic weeks in 2020 versus 2019). There was no commensurate increase in within-network telestroke utilization. Compared with before the pandemic (n=167), pandemic-epoch stroke code patients at the CSC (n=211) were more likely to have histories of hypertension, dyslipidemia, coronary artery disease, and substance abuse; no or public health insurance; lower median household income; and to live in the CSC city (P<0.05). There was no difference in age, sex, race/ethnicity, stroke severity, time to presentation, door-to-needle/door-to-reperfusion times, or discharge modified Rankin Scale. CONCLUSIONS: Hospital presentation for stroke-like symptoms decreased during the COVID-19 pandemic, without differences in stroke severity or early outcomes. Individuals living outside of the CSC city were less likely to present for stroke codes at the CSC during the pandemic. Public health initiatives to increase awareness of presenting for non-COVID-19 medical emergencies such as stroke during the pandemic are critical.


Brain Ischemia/epidemiology , Intracranial Hemorrhages/epidemiology , Stroke/epidemiology , Time-to-Treatment/statistics & numerical data , Aged , Aged, 80 and over , Betacoronavirus , Brain Ischemia/diagnosis , Brain Ischemia/physiopathology , Brain Ischemia/therapy , COVID-19 , Cohort Studies , Comorbidity , Connecticut/epidemiology , Coronary Artery Disease/epidemiology , Coronavirus Infections/epidemiology , Dyslipidemias/epidemiology , Emergency Medical Services , Ethnicity , Female , Humans , Hypertension/epidemiology , Income , Insurance, Health , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/physiopathology , Intracranial Hemorrhages/therapy , Male , Medically Uninsured , Middle Aged , Outcome and Process Assessment, Health Care , Pandemics , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Stroke/diagnosis , Stroke/physiopathology , Stroke/therapy , Substance-Related Disorders/epidemiology , Telemedicine , Thrombectomy , Thrombolytic Therapy
7.
BMC Immunol ; 19(1): 42, 2018 12 21.
Article En | MEDLINE | ID: mdl-30577749

It has been highlighted that the original article [1] contained a typesetting mistake in the middle name of Arthur F. Steinschneider.

8.
BMC Immunol ; 19(1): 30, 2018 10 30.
Article En | MEDLINE | ID: mdl-30376808

BACKGROUND: Transcriptional profiling with ultra-low input methods can yield valuable insights into disease, particularly when applied to the study of immune cells using RNA-sequencing. The advent of these methods has allowed for their use in profiling cells collected in clinical trials and other studies that involve the coordination of human-derived material. To date, few studies have sought to quantify what effects that collection and handling of this material can have on resulting data. RESULTS: We characterized the global effects of blood handling, methods for leukocyte isolation, and preservation media on low numbers of immune cells isolated from blood. We found overall that storage/shipping temperature of blood prior to leukocyte isolation and sorting led to global changes in both CD8+ T cells and monocytes, including alterations in immune-related gene sets. We found that the use of a leukocyte filtration system minimized these alterations and we applied this method to generate high-quality transcriptional data from sorted immune cells isolated from the blood of intracerebral hemorrhage patients and matched healthy controls. CONCLUSIONS: Our data underscore the necessity of processing samples with comparably defined protocols prior to transcriptional profiling and demonstrate that a filtration method can be applied to quickly isolate immune cells of interest while minimizing transcriptional bias.


CD8-Positive T-Lymphocytes/immunology , Leukocyte Reduction Procedures/methods , Leukocytes, Mononuclear/immunology , Transcriptome , CD8-Positive T-Lymphocytes/cytology , Gene Expression Profiling , Humans , Leukocytes, Mononuclear/cytology , Sequence Analysis, RNA/methods
9.
J Clin Invest ; 128(2): 607-624, 2018 02 01.
Article En | MEDLINE | ID: mdl-29251628

Macrophages are a source of both proinflammatory and restorative functions in damaged tissue through complex dynamic phenotypic changes. Here, we sought to determine whether monocyte-derived macrophages (MDMs) contribute to recovery after acute sterile brain injury. By profiling the transcriptional dynamics of MDMs in the murine brain after experimental intracerebral hemorrhage (ICH), we found robust phenotypic changes in the infiltrating MDMs over time and demonstrated that MDMs are essential for optimal hematoma clearance and neurological recovery. Next, we identified the mechanism by which the engulfment of erythrocytes with exposed phosphatidylserine directly modulated the phenotype of both murine and human MDMs. In mice, loss of receptor tyrosine kinases AXL and MERTK reduced efferocytosis of eryptotic erythrocytes and hematoma clearance, worsened neurological recovery, exacerbated iron deposition, and decreased alternative activation of macrophages after ICH. Patients with higher circulating soluble AXL had poor 1-year outcomes after ICH onset, suggesting that therapeutically augmenting efferocytosis may improve functional outcomes by both reducing tissue injury and promoting the development of reparative macrophage responses. Thus, our results identify the efferocytosis of eryptotic erythrocytes through AXL/MERTK as a critical mechanism modulating macrophage phenotype and contributing to recovery from ICH.


Cerebral Hemorrhage/pathology , Erythrocytes/classification , Macrophages/cytology , Animals , Apoptosis , Brain Injuries , Erythrocytes/cytology , Hematoma/metabolism , Humans , Immunity, Innate , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phagocytosis , Phenotype , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Solubility , Treatment Outcome , c-Mer Tyrosine Kinase/metabolism , Axl Receptor Tyrosine Kinase
10.
J Clin Invest ; 127(1): 280-292, 2017 01 03.
Article En | MEDLINE | ID: mdl-27893460

Intracerebral hemorrhage (ICH) is a devastating form of stroke that results from the rupture of a blood vessel in the brain, leading to a mass of blood within the brain parenchyma. The injury causes a rapid inflammatory reaction that includes activation of the tissue-resident microglia and recruitment of blood-derived macrophages and other leukocytes. In this work, we investigated the specific responses of microglia following ICH with the aim of identifying pathways that may aid in recovery after brain injury. We used longitudinal transcriptional profiling of microglia in a murine model to determine the phenotype of microglia during the acute and resolution phases of ICH in vivo and found increases in TGF-ß1 pathway activation during the resolution phase. We then confirmed that TGF-ß1 treatment modulated inflammatory profiles of microglia in vitro. Moreover, TGF-ß1 treatment following ICH decreased microglial Il6 gene expression in vivo and improved functional outcomes in the murine model. Finally, we observed that patients with early increases in plasma TGF-ß1 concentrations had better outcomes 90 days after ICH, confirming the role of TGF-ß1 in functional recovery from ICH. Taken together, our data show that TGF-ß1 modulates microglia-mediated neuroinflammation after ICH and promotes functional recovery, suggesting that TGF-ß1 may be a therapeutic target for acute brain injury.


Brain Injuries/blood , Cerebral Hemorrhage/blood , Microglia/metabolism , Recovery of Function , Signal Transduction , Transforming Growth Factor beta1/blood , Animals , Brain Injuries/etiology , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Gene Expression Regulation , Interleukin-6/biosynthesis , Interleukin-6/genetics , Mice , Mice, Transgenic , Microglia/pathology , Transforming Growth Factor beta1/genetics
11.
Cell ; 166(5): 1117-1131.e14, 2016 Aug 25.
Article En | MEDLINE | ID: mdl-27565342

Cancer cells must evade immune responses at distant sites to establish metastases. The lung is a frequent site for metastasis. We hypothesized that lung-specific immunoregulatory mechanisms create an immunologically permissive environment for tumor colonization. We found that T-cell-intrinsic expression of the oxygen-sensing prolyl-hydroxylase (PHD) proteins is required to maintain local tolerance against innocuous antigens in the lung but powerfully licenses colonization by circulating tumor cells. PHD proteins limit pulmonary type helper (Th)-1 responses, promote CD4(+)-regulatory T (Treg) cell induction, and restrain CD8(+) T cell effector function. Tumor colonization is accompanied by PHD-protein-dependent induction of pulmonary Treg cells and suppression of IFN-γ-dependent tumor clearance. T-cell-intrinsic deletion or pharmacological inhibition of PHD proteins limits tumor colonization of the lung and improves the efficacy of adoptive cell transfer immunotherapy. Collectively, PHD proteins function in T cells to coordinate distinct immunoregulatory programs within the lung that are permissive to cancer metastasis. PAPERCLIP.


CD8-Positive T-Lymphocytes/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung/immunology , Oxygen/metabolism , Prolyl Hydroxylases/metabolism , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/enzymology , Glycolysis/immunology , Interferon-gamma/immunology , Lung/pathology , Lung Neoplasms/therapy , Lymphocyte Activation , Mice , Mice, Knockout , Neoplasm Metastasis , Neuropilin-1/metabolism , Prolyl Hydroxylases/genetics , T-Lymphocytes, Regulatory/enzymology , Th1 Cells/enzymology , Th1 Cells/immunology
12.
Semin Neurol ; 36(3): 288-97, 2016 Jun.
Article En | MEDLINE | ID: mdl-27214704

Intracerebral hemorrhage (ICH) is a major health concern, with high rates of mortality and morbidity and no highly effective clinical interventions. Basic research in animal models of ICH has provided insight into its complex pathology, in particular revealing the role of inflammation in driving neuronal death and neurologic deficits after hemorrhage. The response to ICH occurs in four distinct phases: (1) initial tissue damage and local activation of inflammatory factors, (2) inflammation-driven breakdown of the blood-brain barrier, (3) recruitment of circulating inflammatory cells and subsequent secondary immunopathology, and (4) engagement of tissue repair responses that promote tissue repair and restoration of neurologic function. The development of CNS inflammation occurs over many days after initial hemorrhage and thus may represent an ideal target for treatment of the disease, but further research is required to identify the mechanisms that promote engagement of inflammatory versus anti-inflammatory pathways. In this review, the authors examine how experimental models of ICH have uncovered critical mediators of pathology in each of the four stages of the inflammatory response, and focus on the role of the immune system in these processes.


Anti-Inflammatory Agents/therapeutic use , Cerebral Hemorrhage/immunology , Inflammation , Animals , Blood-Brain Barrier , Cerebral Hemorrhage/drug therapy , Humans
13.
Immunity ; 42(6): 1130-42, 2015 Jun 16.
Article En | MEDLINE | ID: mdl-26070484

Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.


Bone Marrow Cells/immunology , Dendritic Cells/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Antigens, Ly/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/parasitology , Cell Differentiation , Cells, Cultured , Interferon-gamma/metabolism , Interleukin-12/genetics , Interleukin-12/metabolism , Intestinal Mucosa/parasitology , Killer Cells, Natural/parasitology , Leukocytes, Mononuclear/parasitology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Immunological , Organ Specificity/immunology , Repressor Proteins/genetics , Repressor Proteins/metabolism
14.
Immunol Rev ; 259(1): 75-87, 2014 May.
Article En | MEDLINE | ID: mdl-24712460

The immune system of the gastrointestinal tract must be tightly regulated to limit pathologic responses toward innocuous antigens while simultaneously allowing for rapid development of effector responses against invading pathogens. Highly specialized antigen-presenting cell (APC) subsets present in the gut play a dominant role in balancing these seemingly disparate functions. In this review, we discuss new findings associated with the function of gut APCs and particularly the contextual role of these cells in both establishing tolerance to orally acquired antigens in the steady state and regulating acute inflammation during infection.


Antigen-Presenting Cells/immunology , Gastrointestinal Tract/immunology , Animals , Antigen-Presenting Cells/metabolism , Forkhead Transcription Factors/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Homeostasis/immunology , Host-Pathogen Interactions/immunology , Humans , Immunomodulation , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Monocytes/immunology , Monocytes/metabolism , Phagocytes/immunology , Phagocytes/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
15.
Nat Med ; 19(6): 713-21, 2013 Jun.
Article En | MEDLINE | ID: mdl-23708291

The commensal flora can promote both immunity to pathogens and mucosal inflammation. How commensal-driven inflammation is regulated in the context of infection remains poorly understood. Here, we show that during acute mucosal infection of mice with Toxoplasma gondii, inflammatory monocytes acquire a tissue-specific regulatory phenotype associated with production of the lipid mediator prostaglandin E2 (PGE2). Notably, in response to commensals, inflammatory monocytes can directly inhibit neutrophil activation in a PGE2-dependent manner. Further, in the absence of inflammatory monocytes, mice develop severe neutrophil-mediated pathology in response to pathogen challenge that can be controlled by PGE2 analog treatment. Complementing these findings, inhibition of PGE2 led to enhanced neutrophil activation and host mortality after infection. These data demonstrate a previously unappreciated dual action of inflammatory monocytes in controlling pathogen expansion while limiting commensal-mediated damage to the gut. Collectively, our results place inflammatory monocyte-derived PGE2 at the center of a commensal-driven regulatory loop required to control host-commensal dialog during pathogen-induced inflammation.


Gastrointestinal Diseases/immunology , Monocytes/immunology , Toxoplasmosis, Animal/immunology , Acute Disease , Animals , Antigens, Ly/physiology , Dinoprostone/biosynthesis , Female , Humans , Interleukin-10/biosynthesis , Mice , Mice, Inbred C57BL , Neutrophil Activation , Phenotype , Tumor Necrosis Factor-alpha/biosynthesis
16.
Environ Health Perspect ; 119(4): 547-52, 2011 Apr.
Article En | MEDLINE | ID: mdl-21126938

BACKGROUND: Perinatal exposure to low-doses of bisphenol A (BPA) results in alterations in the ovary, uterus, and mammary glands and in a sexually dimorphic region of the brain known to be important for estrous cyclicity. OBJECTIVES: We aimed to determine whether perinatal exposure to environmentally relevant doses of BPA alters reproductive capacity. METHODS: Female CD-1 mice that were exposed to BPA at 0, 25 ng, 250 ng, or 25 µg/kg body weight (BW)/day or diethylstilbestrol (DES) at 10 ng/kg BW/day (positive control) from gestational day 8 through day 16 of lactation were continuously housed with proven breeder males for 32 weeks starting at 2 months of age. At each delivery, pups born to these mating pairs were removed. The cumulative number of pups, number of deliveries, and litter size were recorded. The purity of the BPA used in this and our previous studies was assessed using HPLC, mass spectrometry, and nuclear magnetic resonance. RESULTS: The forced breeding experiment revealed a decrease in the cumulative number of pups, observed as a nonmonotonic dose-response effect, and a decline in fertility and fecundity over time in female mice exposed perinatally to BPA. The BPA was 97% pure, with no evidence of contamination by other phenolic compounds. CONCLUSIONS: Perinatal exposure to BPA leads to a dose-dependent decline in the reproductive capacity of female mice. The effects on the cumulative number of pups are comparable to those previously reported in mice developmentally exposed to DES, a compound well known to impair reproduction in women. This association suggests the possibility that early BPA exposure may also affect reproductive capacity in women.


Environmental Pollutants/toxicity , Fertility/drug effects , Phenols/toxicity , Reproduction/drug effects , Animals , Animals, Newborn , Benzhydryl Compounds , Dose-Response Relationship, Drug , Female , Mice
...