Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1324084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143744

RESUMEN

Developing effective vaccines against viral infections have significant impacts on development, prosperity and well-being of human populations. Thus, successful vaccines such as smallpox and polio vaccines, have promoted global societal well-being. In contrast, ineffective vaccines may fuel arguments that retard scientific progress. We aim to stimulate a multilevel discussion on how to develop effective vaccines against recent and future pandemics by focusing on acquired immunodeficiency syndrome (AIDS), coronavirus disease (COVID) and other viral infections. We appeal to harnessing recent achievements in this field specifically towards a cure for current pandemics and prevention of the next pandemics. Among these, we propose to apply the HIV DNA in chromatin format - an end product of aborted HIV integration in episomal forms, i.e., the chromatin vaccines (cVacc), to elicit the epigenetic silencing and memory that prevent viral replication and infection.


Asunto(s)
Infecciones por Coronavirus , Infecciones por VIH , Vacunas Virales , Humanos , Cromatina/genética , Pandemias/prevención & control
3.
Contact Dermatitis ; 89(4): 230-240, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37463838

RESUMEN

INTRODUCTION: Poly(I:C) is recognised by endosomal Toll-like receptor 3 (TLR3) and activates cytotoxic CD8(+) lymphocytes and natural killer (NK) cells. It has been shown that the viral TLR3 agonist induces robust and long-lasting T-cell-mediated responses. In addition, TLR3 modulates the contact hypersensitivity reaction. OBJECTIVE: This study aimed to determine whether poly(I:C) injection can induce NK-mediated hapten reactivity in mice. METHODS: Mice were treated with poly(I:C), and their response to dinitrofluorobenzene hapten was measured by assessing ear swelling and serum interferon gamma (IFN-γ) production. Adoptive cell transfer and cell sorting were used to investigate the mechanism of the reaction, and the phenotype of poly(I:C)-activated liver NK cells was determined by flow cytometry analysis. RESULTS: The results showed that poly(I:C) administration increased ear swelling, serum IFN-γ levels and the response to hapten in both immunocompetent and T- and B-cell-deficient mice. Only liver poly(I:C)-activated DX5(+) NK cells were able to transfer reactivity to hapten into a naive recipient. Induction of liver NK cells after poly(I:C) administration was TLR3/TRIF- and IFN-γ-dependent, interleukin 12-independent, and not modulated by MyD88. CONCLUSION: This study provides new insights into how poly(I:C) stimulates NK-mediated reactivity to hapten and suggests that liver NK cells may modulate the immune response to non-pathogenic factors during viral infection.


Asunto(s)
Dermatitis Alérgica por Contacto , Receptor Toll-Like 3 , Ratones , Animales , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/genética , Ligandos , Dermatitis Alérgica por Contacto/etiología , Células Asesinas Naturales , Poli I-C/efectos adversos , Interferón gamma , Ratones Endogámicos C57BL
4.
Vaccines (Basel) ; 10(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36298489

RESUMEN

Themes of discussions in the Special Issue of T Cell Immunity and HIV-1 Pathogenicity are outlined here [...].

5.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682875

RESUMEN

Carrier effects of extracellular vesicles (EV) like exosomes refer to properties of the vesicles that contribute to the transferred biologic effects of their contents to targeted cells. This can pertain to ingested small amounts of xenogeneic plant miRNAs and oral administration of immunosuppressive exosomes. The exosomes contribute carrier effects on transfers of miRNAs by contributing both to the delivery and the subsequent functional intracellular outcomes. This is in contrast to current quantitative canonical rules that dictate just the minimum copies of a miRNA for functional effects, and thus successful transfers, independent of the EV carrier effects. Thus, we argue here that transfers by non-canonical minute quantities of miRNAs must consider the EV carrier effects of functional low levels of exosome transferred miRNA that may not fit conventional reductionist stoichiometric concepts. Accordingly, we have examined traditional stoichiometry vs. systems biology that may be more appropriate for delivered exosome functional responses. Exosome carrier properties discussed include; their required surface activating interactions with targeted cells, potential alternate targets beyond mRNAs, like reaching a threshold, three dimensional aspects of the RNAs, added EV kinetic dynamic aspects making transfers four dimensional, and unique intracellular release from EV that resist intracellular digestion in phagolysosomes. Together these EV carrier considerations might allow systems analysis. This can then result in a more appropriate understanding of transferred exosome carrier-assisted functional transfers. A plea is made that the miRNA expert community, in collaboration with exosome experts, perform new experiments on molecular and quantitative miRNA functional effects in systems that include EVs, like variation in EV type and surface constituents, delivery, dose and time to hopefully create more appropriate and truly current canonical concepts of the consequent miRNA functional transfers by EVs like exosomes.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Digestión , Exosomas/genética , Vesículas Extracelulares/genética , MicroARNs/genética , Fagosomas , Análisis de Sistemas
7.
J Extracell Vesicles ; 10(11): e12137, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478241

RESUMEN

Intravenous (IV) infusion of bone marrow-derived mesenchymal stem/stromal cells (MSCs) stabilizes the blood-spinal cord barrier (BSCB) and improves functional recovery in experimental models of spinal cord injury (SCI). Although IV delivered MSCs do not traffic to the injury site, IV delivered small extracellular vesicles (sEVs) derived from MSCs (MSC-sEVs) do and are taken up by a subset of M2 macrophages. To test whether sEVs released by MSCs are responsible for the therapeutic effects of MSCs, we tracked sEVs produced by IV delivered DiR-labelled MSCs (DiR-MSCs) after transplantation into SCI rats. We found that sEVs were released by MSCs in vivo, trafficked to the injury site, associated specifically with M2 macrophages and co-localized with exosome markers. Furthermore, while a single MSC injection was sufficient to improve locomotor recovery, fractionated dosing of MSC-sEVs over 3 days (F-sEVs) was required to achieve similar therapeutic effects. Infusion of F-sEVs mimicked the effects of single dose MSC infusion on multiple parameters including: increased expression of M2 macrophage markers, upregulation of transforming growth factor-beta (TGF-ß), TGF-ß receptors and tight junction proteins, and reduction in BSCB permeability. These data suggest that release of sEVs by MSCs over time induces a cascade of cellular responses leading to improved functional recovery.


Asunto(s)
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Traumatismos de la Médula Espinal/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
8.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34451831

RESUMEN

Previously, we showed that mouse delayed-type hypersensitivity (DTH) can be antigen-specifically downregulated by suppressor T cell-derived miRNA-150 carried by extracellular vesicles (EVs) that target antigen-presenting macrophages. However, the exact mechanism of the suppressive action of miRNA-150-targeted macrophages on effector T cells remained unclear, and our current studies aimed to investigate it. By employing the DTH mouse model, we showed that effector T cells were inhibited by macrophage-released EVs in a miRNA-150-dependent manner. This effect was enhanced by the pre-incubation of EVs with antigen-specific antibodies. Their specific binding to MHC class II-expressing EVs was proved in flow cytometry and ELISA-based experiments. Furthermore, by the use of nanoparticle tracking analysis and transmission electron microscopy, we found that the incubation of macrophage-released EVs with antigen-specific antibodies resulted in EVs' aggregation, which significantly enhanced their suppressive activity in vivo. Nowadays, it is increasingly evident that EVs play an exceptional role in intercellular communication and selective cargo transfer, and thus are considered promising candidates for therapeutic usage. However, EVs appear to be less effective than their parental cells. In this context, our current studies provide evidence that antigen-specific antibodies can be easily used for increasing EVs' biological activity, which has great therapeutic potential.

9.
RNA Biol ; 18(11): 2038-2053, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33944671

RESUMEN

Extracellular vesicles (EV), such as exosomes, are emerging biologic entities that mediate important newly recognized functional effects. Exosomes are intracellular endosome-originating, cell-secreted, small nano-size EV. They can transfer cargo molecules like miRNAs to act intracellularly in targeted acceptor cells, to then mediate epigenetic functional alterations. Exosomes among EV, are universal nanoparticles of life that are present across all species. Some critics mistakenly hold exosomes to concepts and standards of cells, whereas they are subcellular nanospheres that are a million times smaller, have neither nuclei nor mitochondria, are far less complex and currently cannot be studied deeply and elegantly by many and diverse technologies developed for cells over many years. There are important concerns about the seeming impossibility of biologically significant exosome transfers of very small amounts of miRNAs resulting in altered targeted cell functions. These hesitations are based on current canonical concepts developed for non-physiological application of miRNAs alone, or artificial non-quantitative genetic expression. Not considered is that the natural physiologic intercellular transit via exosomes can contribute numerous augmenting carrier effects to functional miRNA transfers. Some of these are particularly stimulated complex extracellular and intracellular physiologic processes activated in the exosome acceptor cells that can crucially influence the intracellular effects of the transferred miRNAs. These can lead to molecular chemical changes altering DNA expression for mediating functional changes of the targeted cells. Such exosome mediated molecular transfers of epigenetic functional alterations, are the most exciting and life-altering property that these nano EV bring to virtually all of biology and medicine. .Abbreviations: Ab, Antibody Ag Antigen; APC, Antigen presenting cells; CS, contact sensitivity; DC, Dendritic cells; DTH, Delayed-type hypersensitivity; EV, extracellular vesicles; EV, Extracellular vesicle; FLC, Free light chains of antibodies; GI, gastrointestinal; IP, Intraperitoneal administration; IV, intravenous administration; OMV, Outer membrane vesicles released by bacteria; PE, Phos-phatidylethanolamine; PO, oral administration.


Asunto(s)
Comunicación Celular , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Animales , Exosomas/genética , Vesículas Extracelulares/genética , Humanos , MicroARNs/genética
10.
J Extracell Vesicles ; 10(1): e12004, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33304473

RESUMEN

Exosome extracellular vesicles as biologic therapy for COVID-19 are discussed for two areas. The first involves the growing use of mesenchymal stromal cells (MSCs) for the profound clinical cytokine storm and severe pneumonia in COVID-19 patients. Instead, it is recommended to treat alternatively with their MSC-released exosomes. This is because many reports in the literature and our data have shown that the release of exosomes from the in vivo administered MSC is actually responsible for their beneficial effects. Further, the exosomes are superior, simpler and clinically more convenient compared to their parental MSC. Additionally, in the context of COVID-19, the known tendency of MSC to intravascularly aggregate causing lung dysfunction might synergize with the pneumonia aspects, and the tendency of MSC peripheral vascular micro aggregates might synergize with the vascular clots of the COVID-19 disease process, causing significant central or peripheral vascular insufficiency. The second exosome therapeutic area for severe COVID-19 involves use of convalescent plasma for its content of acquired immune antibodies that must consider the role in this therapy of contained nearly trillions of exosomes. Many of these derive from activated immune modulating cells and likely can function to transfer miRNAs that acting epigenetically to also influence the convalescent plasma recipient response to the virus. There is sufficient evidence, like recovery of patients with antibody deficiencies, to postulate that the antibodies actually have little effect and that immune resistance is principally due to T cell mechanisms. Further, COVID-19 convalescent plasma has remarkably weak beneficial effects if compared to what was expected from many prior studies. This may be due to the dysfunctional immune response to the infection and resulting weak Ab that may be impaired further by antagonistic exosomes in the convalescent plasma. At the least, pre selection of plasma for the best antibodies and relevant exosomes would produce the most optimum therapy for very severely affected COVID-19 patients.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , Exosomas/inmunología , Trasplante de Células Madre Mesenquimatosas , Síndrome de Liberación de Citoquinas , Humanos , Inmunización Pasiva , Células Madre Mesenquimatosas , MicroARNs , Sueroterapia para COVID-19
11.
Int J Mol Sci ; 21(15)2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748889

RESUMEN

We previously discovered suppressor T cell-derived, antigen (Ag)-specific exosomes inhibiting mouse hapten-induced contact sensitivity effector T cells by targeting antigen-presenting cells (APCs). These suppressive exosomes acted Ag-specifically due to a coating of antibody free light chains (FLC) from Ag-activated B1a cells. Current studies are aimed at determining if similar immune tolerance could be induced in cutaneous delayed-type hypersensitivity (DTH) to the protein Ag (ovalbumin, OVA). Intravenous administration of a high dose of OVA-coupled, syngeneic erythrocytes similarly induced CD3+CD8+ suppressor T cells producing suppressive, miRNA-150-carrying exosomes, also coated with B1a cell-derived, OVA-specific FLC. Simultaneously, OVA-immunized B1a cells produced an exosome subpopulation, originally coated with Ag-specific FLC, that could be rendered suppressive by in vitro association with miRNA-150. Importantly, miRNA-150-carrying exosomes from both suppressor T cells and B1a cells efficiently induced prolonged DTH suppression after single systemic administration into actively immunized mice, with the strongest effect observed after oral treatment. Current studies also showed that OVA-specific FLC on suppressive exosomes bind OVA peptides suggesting that exosome-coating FLC target APCs by binding to peptide-Ag-major histocompatibility complexes. This renders APCs capable of inhibiting DTH effector T cells. Thus, our studies describe a novel immune tolerance mechanism mediated by FLC-coated, Ag-specific, miRNA-150-carrying exosomes that act on the APC and are particularly effective after oral administration.


Asunto(s)
Anticuerpos/inmunología , Células Presentadoras de Antígenos/inmunología , Exosomas/inmunología , Hipersensibilidad Tardía/inmunología , Macrófagos/inmunología , MicroARNs/inmunología , Animales , Antígenos/inmunología , Femenino , Tolerancia Inmunológica/inmunología , Cadenas Ligeras de Inmunoglobulina/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , MicroARNs/genética , Ovalbúmina/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
12.
Clin Exp Allergy ; 49(11): 1487-1499, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31365154

RESUMEN

BACKGROUND: At present, the role of autologous cells as antigen carriers inducing immune tolerance is appreciated. Accordingly, intravenous administration of haptenated syngeneic mouse red blood cells (sMRBC) leads to hapten-specific suppression of contact hypersensitivity (CHS) in mice, mediated by light chain-coated extracellular vesicles (EVs). Subsequent studies suggested that mice intravenously administered with sMRBC alone may also generate regulatory EVs, revealing the possible self-tolerogenic potential of autologous erythrocytes. OBJECTIVES: The current study investigated the immune effects induced by mere intravenous administration of a high dose of sMRBC in mice. METHODS: The self-tolerogenic potential of EVs was determined in a newly developed mouse model of delayed-type hypersensitivity (DTH) to sMRBC. The effects of EV's action on DTH effector cells were evaluated cytometrically. The suppressive activity of EVs, after coating with anti-hapten antibody light chains, was assessed in hapten-induced CHS in wild-type or miRNA-150-/- mice. RESULTS: Intravenous administration of sMRBC led to the generation of CD9 + CD81+ EVs that suppressed sMRBC-induced DTH in a miRNA-150-dependent manner. Furthermore, the treatment of DTH effector cells with sMRBC-induced EVs decreased the activation of T cells but enhanced their apoptosis. Finally, EVs coated with antibody light chains inhibited hapten-induced CHS. CONCLUSIONS AND CLINICAL RELEVANCE: The current study describes a newly discovered mechanism of self-tolerance induced by the intravenous delivery of a high dose of sMRBC that is mediated by EVs in a miRNA-150-dependent manner. This mechanism implies the concept of naturally occurring immune tolerance, presumably activated by overloading of the organism with altered self-antigens.


Asunto(s)
Autoantígenos , Vesículas Extracelulares/trasplante , Hipersensibilidad , MicroARNs , Animales , Autoantígenos/genética , Autoantígenos/inmunología , Vesículas Extracelulares/genética , Vesículas Extracelulares/inmunología , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/patología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/inmunología , Trasplante Isogénico
13.
Folia Med Cracov ; 59(1): 61-73, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31180076

RESUMEN

Constantly increasing prevalence of allergic diseases determines the attempts to elaborate the therapeutic strategies activating immune tolerance to particular allergen. Our current research focuses on the antigen-specific action of CD8+ suppressor T (Ts) lymphocytes induced in mice by intravenous administration of a high dose of haptenated syngeneic erythrocytes. While the regulatory activity of Ts cells mediated by exosome-delivered miRNA-150 is well de ned, the mechanism of their induction remained unclear. Therefore, the current studies investigated the immune e ects induced in mice by intravenous administration of contact allergens coupled to syngeneic erythrocytes. In mouse models of hapten-induced contact hypersensitivity (CHS) and delayed-type hypersensitivity to ovalbumin, we have shown that intravenous administration of hapten-coupled erythrocytes failed to induce CHS effector cells. Moreover, hapten-induced CHS reaction occurred to be suppressed in mice intravenously administered with syngeneic erythrocytes coupled with protein allergen. Finally, we have demonstrated that intravenously administered allergen induces immune tolerance only when bound to syngeneic erythrocytes, proving that intravenously delivered allergens are deprived of their immunizing properties when coupled with membrane of self cells. Altogether, our current studies suggest that alteration of self cell membrane by allergen binding is enough to induce Ts cell-mediated immune tolerance to nonpathogenic agents, which express a great translational potential in such conditions as allergies and hypersensitivity-related autoimmune disorders.


Asunto(s)
Dermatitis por Contacto/inmunología , Transfusión de Eritrocitos/métodos , Haptenos/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Trasplante Isogénico/métodos , Alérgenos/farmacología , Animales , Hipersensibilidad/inmunología , Ratones , Ratones Endogámicos CBA , Oxazolona/farmacología , Subgrupos de Linfocitos T/inmunología , Trinitrobencenos/farmacología
14.
Nutrients ; 11(4)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018604

RESUMEN

In patients with non-IgE-mediated milk allergy, a cellular mechanism of delayed-type hypersensitivity (DTH) is considered. Recent findings prove that cell-mediated reactions can be antigen-specifically inhibited by extracellular vesicles (EVs) carrying miRNA-150. We sought to establish a new mouse model of DTH to casein and test the possibility of antigen-specific suppression of the inflammatory reaction. To produce soluble antigenic peptides, casein was subjected to alkaline hydrolysis. DTH reaction to casein was induced in CBA, C57BL/6, and BALB/c mice by intradermal (id) injection of the antigen. Cells collected from spleens and lymph nodes were positively or negatively selected and transferred to naive recipients intravenously (iv). CBA mice were tolerized by iv injection of mouse erythrocytes conjugated with casein antigen and following id immunization with the same antigen. Suppressive EVs were harvested from cell cultures and serum of tolerized donors by means of ultrafiltration and ultracentrifugation for further therapeutic utilization. The newly established mouse model of DTH to casein was mediated by CD4+ Th1 cells and macrophages, while EVs produced by casein-tolerized animals effectively suppressed effector cell response, in an miRNA-150-dependent manner. Altogether, our observations contribute to the current understanding of non-IgE-mediated allergy to casein and of the possibilities to downregulate this reaction.


Asunto(s)
Caseínas/inmunología , Vesículas Extracelulares/química , Hipersensibilidad Tardía , MicroARNs/metabolismo , Traslado Adoptivo , Animales , Antígenos/inmunología , Subgrupos de Linfocitos B/fisiología , Linfocitos T CD4-Positivos , Regulación de la Expresión Génica/inmunología , Macrófagos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA
15.
Int J Mol Sci ; 19(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205452

RESUMEN

Antibody light chains (LCs), formerly considered a waste product of immunoglobulin synthesis, are currently recognized as important players in the activation of the immune response. However, very little is known about the possible immune regulatory functions of LCs. Recently, we reported that hapten-specific LCs coat miRNA-150-carrying exosomes produced by CD8+ suppressor T cells downregulating the contact hypersensitivity (CHS) reaction in an antigen-specific manner, in mice tolerized by intravenous administration of a high dose of hapten-coupled syngeneic erythrocytes. Thus, the current studies aimed at investigating the role of hapten-specific LCs in antigen-specific, exosome-mediated suppression of CHS effector cells. Suppressor T cell-derived exosomes from tolerized B-cell-deficient µMT-/-, NKT-cell-deficient Jα18-/-, and immunoglobulin-deficient JH-/- mice were nonsuppressive, unless supplemented with LCs of specificity strictly respective to the hapten used for sensitization and CHS elicitation in mice. Thus, these observations demonstrate that B1-cell-derived LCs, coating exosomes in vivo and in vitro, actually ensure the specificity of CHS suppression. Our research findings substantially expand current understanding of the newly discovered, suppressor T cell-dependent tolerance mechanism by uncovering the function of antigen-specific LCs in exosome-mediated, cell⁻cell communication. This express great translational potential in designing nanocarriers for specific targeting of desired cells.


Asunto(s)
Linfocitos B/inmunología , Dermatitis por Contacto/inmunología , Exosomas/inmunología , Cadenas Ligeras de Inmunoglobulina/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Animales , Comunicación Celular , Tolerancia Inmunológica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
16.
PLoS One ; 13(1): e0190358, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293592

RESUMEN

In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSCexos). In this study, we assessed the possible mechanism of MSCexos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSCexos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSCexos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSCexos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration.


Asunto(s)
Trasplante de Células , Exosomas/metabolismo , Macrófagos/patología , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal/patología , Animales , Medios de Cultivo Condicionados , Medio de Cultivo Libre de Suero , Tamaño de los Órganos , Ratas , Ratas Sprague-Dawley , Bazo/patología
17.
J Extracell Vesicles ; 6(1): 1321455, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717418

RESUMEN

Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines.

19.
Br J Haematol ; 177(3): 423-440, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28211573

RESUMEN

We have discovered that a small cationic molecule, GW4869, is cytotoxic to a subset of myeloma cell lines and primary myeloma plasma cells. Biochemical analysis revealed that GW4869 binds to anionic phospholipids such as phosphatidylserine - a lipid normally confined to the intracellular side of the cell membrane. However, interestingly, phosphatidylserine was expressed on the surface of all myeloma cell lines tested (n = 12) and 9/15 primary myeloma samples. Notably, the level of phosphatidylserine expression correlated well with sensitivity to GW4869. Inhibition of cell surface phosphatidylserine exposure with brefeldin A resulted in resistance to GW4869. Finally, GW4869 was shown to delay the growth of phosphatidylserine-high myeloma cells in vivo. To the best of our knowledge, this is the first example of using a small molecule to target phosphatidylserine on malignant cells. This study may provide the rationale for the development of phosphatidylserine-targeting small molecules for the treatment of surface phosphatidylserine-expressing cancers.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Compuestos de Bencilideno/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Fosfatidilserinas/metabolismo , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Compuestos de Bencilideno/administración & dosificación , Compuestos de Bencilideno/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Ratones SCID , Mieloma Múltiple/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Int Arch Allergy Immunol ; 171(1): 1-26, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27820941

RESUMEN

Extracellular vesicles, such as exosomes, are newly recognized intercellular conveyors of functional molecular mechanisms. Notably, they transfer RNAs and proteins between different cells that can then participate in the complex pathogenesis of allergic and related hypersensitivity responses and disease mechanisms, as described herein. This review highlights this important new appreciation of the in vivo participation of such extracellular vesicles in the interactions between allergy-mediating cells. We take into account paracrine epigenetic exchanges mediated by surrounding stromal cells and the endocrine receipt of exosomes from distant cells via the circulation. Exosomes are natural ancient nanoparticles of life. They are made by all cells and in some form by all species down to fungi and bacteria, and are present in all fluids. Besides a new focus on their role in the transmission of genetic regulation, exosome transfer of allergens was recently shown to induce allergic inflammation. Importantly, regulatory and tolerogenic exosomes can potently inhibit allergy and hypersensitivity responses, usually acting nonspecifically, but can also proceed in an antigen-specific manner due to the coating of the exosome surface with antibodies. Deep analysis of processes mediated by exosomes should result in the development of early diagnostic biomarkers, as well as allergen-specific, preventive and therapeutic strategies. These will likely significantly diminish the risks of current allergen-specific parenteral desensitization procedures, and of the use of systemic immunosuppressive drugs. Since extracellular vesicles are physiological, they can be fashioned for the specific delivery of therapeutic molecular instructions through easily tolerated, noninvasive routes, such as oral ingestion, nasal administration, and perhaps even inhalation.


Asunto(s)
Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Interacciones Huésped-Patógeno , Hipersensibilidad Tardía/etiología , Hipersensibilidad Tardía/metabolismo , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Alérgenos/inmunología , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Bacterias/inmunología , Bacterias/metabolismo , Transporte Biológico , Biomarcadores , Comunicación Celular , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA