Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953784

RESUMEN

Exfoliation of graphite and the discovery of the unique properties of graphene─graphite's single layer─have raised significant attention to layered compounds as potential precursors to 2D materials with applications in optoelectronics, spintronics, sensors, and solar cells. In this work, a new orthorhombic polymorph of yttrium bromide, oC16-YBr3 was synthesized from yttrium and CBr4 in a laser-heated diamond anvil cell at 45 GPa and 3000 K. The structure of oC16-YBr3 was solved and refined using in situ synchrotron single-crystal X-ray diffraction. At high pressure, it can be described as a 3D framework of YBr9 polyhedra, but upon decompression below 15 GPa, the structure motif changes to layered, with layers comprising edge-sharing YBr8 polyhedra weakly bonded by van der Waals interactions. The layered oC16-YBr3 material can be recovered to ambient conditions, and according to Perdew-Burke-Ernzerhof-density functional theory calculations, it exhibits semiconductor properties with a band gap that is highly sensitive to pressure. This polymorph possesses a low exfoliation energy of 0.30 J/m2. Our results expand the list of layered trivalent rare-earth metal halides and provide insights into how high pressure alters their structural motifs and physical properties.

2.
J Am Chem Soc ; 146(26): 18161-18171, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38916483

RESUMEN

Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN]- and [CN2]2- anions, as well as the high-pressure formed guanidinates featuring [CN3]5- anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.

3.
Nat Commun ; 15(1): 2855, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565539

RESUMEN

Metal carbides are known to contain small carbon units similar to those found in the molecules of methane, acetylene, and allene. However, for numerous binary systems ab initio calculations predict the formation of unusual metal carbides with exotic polycarbon units, [C6] rings, and graphitic carbon sheets at high pressure (HP). Here we report the synthesis and structural characterization of a HP-CaC2 polymorph and a Ca3C7 compound featuring deprotonated polyacene-like and para-poly(indenoindene)-like nanoribbons, respectively. We also demonstrate that carbides with infinite chains of fused [C6] rings can exist even at conditions of deep planetary interiors ( ~ 140 GPa and ~3300 K). Hydrolysis of high-pressure carbides may provide a possible abiotic route to polycyclic aromatic hydrocarbons in Universe.

4.
Nat Commun ; 15(1): 2244, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472167

RESUMEN

Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.

5.
Sci Adv ; 10(11): eadl5416, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478619

RESUMEN

The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors-ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials.

6.
Adv Mater ; 36(3): e2308030, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37822038

RESUMEN

Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.

7.
Nat Commun ; 14(1): 6207, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798268

RESUMEN

The allotropy of solid molecular nitrogen is the consequence of a complex interplay between fundamental intermolecular as well as intramolecular interactions. Understanding the underlying physical mechanisms hinges on knowledge of the crystal structures of these molecular phases. That is especially true for ζ-N2, key to shed light on nitrogen's polymerization. Here, we perform single-crystal X-ray diffraction on laser-heated N2 samples at 54, 63, 70 and 86 GPa and solve and refine the hitherto unknown structure of ζ-N2. In its monoclinic unit cell (space group C2/c), 16 N2 molecules are arranged in a configuration similar to that of ε-N2. The structure model provides an explanation for the previously identified Raman and infrared lattice and vibrational modes of ζ-N2. Density functional theory calculations give an insight into the gradual delocalization of electronic density from intramolecular bonds to intermolecular space and suggest a possible pathway towards nitrogen's polymerization.

8.
Angew Chem Int Ed Engl ; 62(47): e202311516, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37768278

RESUMEN

A series of isostructural Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3 O2 (CN3 ) solids are composed of the hitherto unknown CN3 5- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3 O2 (CN3 ) compounds are recoverable to ambient conditions. The stabilization of the CN3 5- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.

9.
JACS Au ; 3(6): 1634-1641, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37388691

RESUMEN

The field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides), is rapidly evolving. Here, we present the synthesis of three sodium halides with unpredicted chemical compositions and structures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX3 halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassium chloride (hP24-KCl3). The high-pressure syntheses were realized at 41-80 GPa in diamond anvil cells laser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction (XRD) provided the first accurate structural data for the symmetric trichloride Cl3- anion in hP24-KCl3 and revealed the existence of two different types of infinite linear polyhalogen chains, [Cl]∞n- and [Br]∞n-, in the structures of cP8-AX3 compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contacts between sodium cations. Ab initio calculations support the analysis of structures, bonding, and properties of the studied halogenides.

10.
Front Chem ; 11: 1210081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383952

RESUMEN

Chemical reactions between dysprosium and carbon were studied in laser-heated diamond anvil cells at pressures of 19, 55, and 58 GPa and temperatures of ∼2500 K. In situ single-crystal synchrotron X-ray diffraction analysis of the reaction products revealed the formation of novel dysprosium carbides, Dy4C3 and Dy3C2, and dysprosium sesquicarbide Dy2C3 previously known only at ambient conditions. The structure of Dy4C3 was found to be closely related to that of dysprosium sesquicarbide Dy2C3 with the Pu2C3-type structure. Ab initio calculations reproduce well crystal structures of all synthesized phases and predict their compressional behavior in agreement with our experimental data. Our work gives evidence that high-pressure synthesis conditions enrich the chemistry of rare earth metal carbides.

11.
Nat Chem ; 15(5): 641-646, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36879075

RESUMEN

The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N5]- anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N6]4-. Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56-composed of 520 atoms per unit cell-was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N6]4- is planar and proposed to be aromatic.

12.
Chemistry ; 28(62): e202203123, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36323532

RESUMEN

Invited for the cover of this issue are Dominique Laniel (University of Edinburgh), Florian Trybel (University of Linköping), and their colleagues. The image depicts a bridge built of the newly discovered δ-P3 N5 solid with the structure featuring PN6 units, a previously missing connection between the carbon group elements nitrides and chalcogens nitrides. Read the full text of the article at 10.1002/chem.202201998.

13.
J Appl Crystallogr ; 55(Pt 5): 1383-1391, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36249501

RESUMEN

This paper presents the Domain Auto Finder (DAFi) program and its application to the analysis of single-crystal X-ray diffraction (SC-XRD) data from multiphase mixtures of microcrystalline solids and powders. Superposition of numerous reflections originating from a large number of single-crystal domains of the same and/or different (especially unknown) phases usually precludes the sorting of reflections coming from individual domains, making their automatic indexing impossible. The DAFi algorithm is designed to quickly find subsets of reflections from individual domains in a whole set of SC-XRD data. Further indexing of all found subsets can be easily performed using widely accessible crystallographic packages. As the algorithm neither requires a priori crystallographic information nor is limited by the number of phases or individual domains, DAFi is powerful software to be used for studies of multiphase polycrystalline and microcrystalline (powder) materials. The algorithm is validated by testing on X-ray diffraction data sets obtained from real samples: a multi-mineral basalt rock at ambient conditions and products of the chemical reaction of yttrium and nitro-gen in a laser-heated diamond anvil cell at 50 GPa. The high performance of the DAFi algorithm means it can be used for processing SC-XRD data online during experiments at synchrotron facilities.

14.
Chemistry ; 28(62): e202201998, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35997073

RESUMEN

Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3 N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0 =322 GPa for δ-P3 N5 and 339 GPa for PN2 . Upon decompression below 7 GPa, δ-P3 N5 undergoes a transformation into a novel α'-P3 N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α'-P3 N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.

15.
Angew Chem Int Ed Engl ; 61(34): e202207469, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726633

RESUMEN

Two novel yttrium nitrides, YN6 and Y2 N11 , were synthesized by direct reaction between yttrium and nitrogen at 100 GPa and 3000 K in a laser-heated diamond anvil cell. High-pressure synchrotron single-crystal X-ray diffraction revealed that the crystal structures of YN6 and Y2 N11 feature a unique organization of nitrogen atoms-a previously unknown anionic N18 macrocycle and a polynitrogen double helix, respectively. Density functional theory calculations, confirming the dynamical stability of the YN6 and Y2 N11 compounds, show an anion-driven metallicity, explaining the unusual bond orders in the polynitrogen units. As the charge state of the polynitrogen double helix in Y2 N11 is different from that previously found in Hf2 N11 and because N18 macrocycles have never been predicted or observed, their discovery significantly extends the chemistry of polynitrides.

16.
J Chem Phys ; 156(4): 044503, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35105073

RESUMEN

The high-pressure behavior of simple molecular systems, devoid of strong intermolecular interactions, provides a unique avenue toward a fundamental understanding of matter. Tetrahalides of the carbon group elements (group 14), lacking all intermolecular interactions but van der Waals, are among the most elementary of molecular compounds. Here, we report the investigation of CF4 up to 46.5 GPa-the highest pressure up to which any tetrahalides of group 14 elements have been studied so far-by a combination of single-crystal x-ray diffraction (SC-XRDp), Raman spectroscopy, and ab initio calculations. These measurements reveal a pressure-induced reentrant phase transition (phase II →2.8GPa phase III →∼20GPa phase IIR) at room temperature and the formation of a previously unknown CF4 cubic polymorph, named phase IV, after the laser heating of CF4 at 46.5 GPa. In this work, the structures of phases IIR, III, and IV were solved and the atomic coordinates were refined on the basis of SC-XRDp. A comparison of tetrahalides of group 14 elements underlines that reducing the intermolecular halogen-halogen distances leads to a structural rearrangement from close packing of the tetrahedral molecules to close packing of the halogen atoms.

17.
Commun Chem ; 5(1): 122, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36697723

RESUMEN

Chemical stability of the alkali halides NaCl and KCl has allowed for their use as inert media in high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil cell, thus providing a synthetic route for halogen-containing binary and ternary compounds. So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were synthesized at ~40 GPa and 2000 K and their structures were solved and refined using in situ single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure, previously reported at 108 GPa, was synthesized at ~160 GPa and 2100 K. The results of our ab initio calculations fully support experimental findings and reveal the electronic structure and chemical bonding in these compounds.

18.
Phys Rev Lett ; 127(13): 135501, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623860

RESUMEN

Changes in the bonding of carbon under high pressure leads to unusual crystal chemistry and can dramatically alter the properties of transition metal carbides. In this work, the new orthorhombic polymorph of yttrium carbide, γ-Y_{4}C_{5}, was synthesized from yttrium and paraffin oil in a laser-heated diamond anvil cell at ∼50 GPa. The structure of γ-Y_{4}C_{5} was solved and refined using in situ synchrotron single-crystal x-ray diffraction. It includes two carbon groups: [C_{2}] dimers and nonlinear [C_{3}] trimers. Crystal chemical analysis and density functional theory calculations revealed unusually high noninteger charges ([C_{2}]^{5.2-} and [C_{3}]^{6.8-}) and unique bond orders (<1.5). Our results extend the list of possible carbon states at extreme conditions.

19.
Inorg Chem ; 60(19): 14594-14601, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34520208

RESUMEN

High-pressure nitrogen chemistry has expanded at a formidable rate over the past decade, unveiling the chemical richness of nitrogen. Here, the Zn-N system is investigated in laser-heated diamond anvil cells by synchrotron powder and single-crystal X-ray diffraction, revealing three hitherto unobserved nitrogen compounds: ß-Zn3N2, α-ZnN4, and ß-ZnN4, formed at 35.0, 63.5, and 81.7 GPa, respectively. Whereas ß-Zn3N2 contains the N3- nitride, both ZnN4 solids are found to be composed of polyacetylene-like [N4]∞2- chains. Upon the decompression of ß-ZnN4 below 72.7 GPa, a first-order displacive phase transition is observed from ß-ZnN4 to α-ZnN4. The α-ZnN4 phase is detected down to 11.0 GPa, at lower pressures decomposing into the known α-Zn3N2 (space group Ia3̅) and N2. The equations of states of ß-ZnN4 and α-ZnN4 are also determined, and their bulk moduli are found to be K0 = 126(9) GPa and K0 = 76(12) GPa, respectively. Density functional theory calculations were also performed and provide further insight into the Zn-N system. Moreover, comparing the Mg-N and Zn-N systems underlines the importance of minute chemical differences between metal cations in the resulting synthesized phases.

20.
Inorg Chem ; 60(17): 13440-13452, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492760

RESUMEN

We synthesized single crystals of marokite (CaMn2O4)-type orthorhombic manganese (II,III) oxide, γ-Mn3O4, in a multianvil apparatus at pressures of 10-24 GPa. The magnetic, electronic, and optical properties of the crystals were investigated at ambient pressure. It was found that γ-Mn3O4 is a semiconductor with an indirect band gap Eg of 0.96 eV and two antiferromagnetic transitions (TN) at ∼200 and ∼55 K. The phase stability of the γ-Mn3O4 crystals was examined in the pressure range of 0-60 GPa using single-crystal X-ray diffraction and Raman spectroscopy. A bulk modulus of γ-Mn3O4 was determined to be B0 = 235.3(2) GPa with B' = 2.6(6). The γ-Mn3O4 phase persisted over the whole pressure range studied and did not transform or decompose upon laser heating of the sample to ∼3500 K at 60 GPa. This result seems surprising, given the high-pressure structural diversity of iron oxides with similar stoichiometries. With an increase in pressure, the degree of distortion of MnO6 polyhedra decreased. Furthermore, there are signs indicating a limited charge transfer between the Mn3+ ions in the octahedra and the Mn2+ ions in the trigonal prisms. Our results demonstrate that the high-pressure behavior of the structural, electronic, and chemical properties of manganese oxides strongly differs from that of iron oxides with similar stoichiometries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...