Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Chemosphere ; 307(Pt 1): 135633, 2022 Nov.
Article En | MEDLINE | ID: mdl-35810866

Cadmium (Cd) and Lead (Pb) from industrial wastewater can bioaccumulate in the living organisms of water bodies, posing serious threats to human health. Therefore, efficient remediation of heavy metal ions of Cd (II) and Pb (II) in aqueous media is necessary for public health and environmental sustainability. In the present study, water stable Zirconium (Zr) based metal organic frameworks (MOFs) with SO3H functionalization were synthesized by solvothermal method and used first time for the adsorption of Cd (II) and Pb (II). Synthesis of UiO-66-SO3H, nano-sized (<100 nm) MOFs, was confirmed by FTIR, XRD, FESEM and BET. Effects of contact time, pH and temperature were investigated for adsorption of Cd (II) and Pb (II) onto SO3H-functionalized Zr-MOFs. The UiO-66-SO3H displayed notable rejections of 97% and 88% towards Cd (II) and Pb (II), respectively, after 160 min at 25 °C and pH (6) with an initial concentration of 1000 mg/L. Adsorption capacities of Cd (II) and Pb (II) were achieved as 194.9154 (mg/g) and 176.6879 (mg/g), respectively, at an initial concentration of 1000 mg/L. The Pseudo second-order kinetic model fitted well with linear regression (R2) of value 1. The mechanism was confirmed mainly as a chemisorption and coordination interaction between sulfone group (-SO3H) and metal ions Cd (IIa) and Pb (II). These results may support effective adsorption and can be studied further to enrich and recycle other heavy metals from wastewater.


Metal-Organic Frameworks , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Humans , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Metals, Heavy/analysis , Phthalic Acids , Sulfones , Wastewater/chemistry , Water , Water Pollutants, Chemical/analysis , Zirconium
2.
Microsc Res Tech ; 85(4): 1289-1299, 2022 Apr.
Article En | MEDLINE | ID: mdl-34862680

Environmental remediation of heavy metals from wastewater is becoming popular area in the field of membrane technology. Heavy metals are toxic in nature and have ability to bioaccumulate in water bodies. In current study, zirconium-based metal organic frameworks (MOFs), that is, UiO-66 and UiO-66-SO3 H with a mean diameter of 200 nm were synthesized and intercalated into polyethersulfone (PES) substrate to fabricate thin-film nanocomposite (TFN) membranes via an interfacial polymerization (IP) method. TFN membranes exhibit higher selectivity and permeability as compared to thin-film composite (TFC) membranes for heavy metals, such as cadmium (Cd) and mercury (Hg). Zirconium-based MOFs are highly stable in water and due to smaller pore size enhanced hydrophilicity of TFN membranes. In addition, TFN membrane with functionalized MOF (UiO-66-SO3 H) performed best as compared to TFC and TFN with UiO-66 MOF. The effect of loading of different weight percentages (wt%) of both MOFs for TFN membranes was also investigated. The TFN membranes with loading (0.2 wt%) of UiO-66-SO3 H displayed highest permeability of 9.57 LMH/bar and notable rejections of 90% and 87.7% toward Cd and Hg, respectively. To our best understanding, it is the first study of intercalating functionalized UiO-66-SO3 H in TFC membranes by IP and their application on heavy metals especially Cd and Hg.


Metals, Heavy , Nanocomposites , Metal-Organic Frameworks , Phthalic Acids , Polymers , Sulfones , Water
3.
Microsc Res Tech ; 83(6): 579-588, 2020 Jun.
Article En | MEDLINE | ID: mdl-32003533

The study was conducted to highlight a detailed account of morphology of pollen chosen species of Lamiaceae through scanning electron microscopy, and the anatomical characteristics of leaf epidermis of seven species using simple light microscopy. In results, Anisomeles indica and Otostegia aucheri belong to subfamily Lamioideae because it has tricolpate pollen while the rest eight species belong to subfamily Nepetoideae (hexacolpate pollen). The exine sculpturing of pollen of studied species was found to be reticulate. In the family Lamiaceae, four kinds of stomata were found anomocytic, anisocytic, diacytic, and actinocytic, respectively. The cell wall patterns of epidermal cells were irregular or polygonal with straight or undulate walls. It was noted that the variety of the epidermal trichomes seems of taxonomically important for the identification of species of Lamiaceae. Both nonglandular and glandular trichomes were analyzed. The nonglandular trichomes were characterized with long, thin, and pointed apical unicellular cells. The nonglandular trichomes were A-shaped in Thymus linearis. In Perovskia abrotanoides, stellate glandular trichomes were observed whereas in A. indica and Mentha royleana both glandular and nonglandular trichomes were found. In A. indica, the nonglandular trichomes were sessile and peltate in M. royleana. For the first time in this study, pollen and foliar micromorphological features of selected species of this area are carried out. These taxonomic characters were found to be important in discrimination of species from each other. In future, the detailed study with comprehensive morphology coupled with other important characters is required for delimitation of taxa at various levels.


Epidermal Cells/ultrastructure , Lamiaceae/anatomy & histology , Plant Leaves/cytology , Pollen/anatomy & histology , Pollen/ultrastructure , Microscopy , Microscopy, Electron, Scanning , Pakistan , Trichomes/ultrastructure , Tundra
4.
Chemosphere ; 187: 35-42, 2017 Nov.
Article En | MEDLINE | ID: mdl-28834770

Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L-1) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd.


Cadmium/pharmacokinetics , Lysine/pharmacology , Risk Assessment , Triticum/growth & development , Zinc/pharmacology , Agriculture , Cadmium/analysis , Cadmium/toxicity , Edible Grain/growth & development , Edible Grain/metabolism , Humans , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Soil Pollutants/toxicity , Triticum/metabolism
5.
Int J Phytoremediation ; 18(4): 393-8, 2016.
Article En | MEDLINE | ID: mdl-26515662

The green macroalgae present in freshwater ecosystems have attracted a great attention of the world scientists for removal of heavy metals from wastewater. In this mesocosm study, the uptake rates of heavy metals such as cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) by Oedogonium westi (O. westti) were measured. The equilibrium adsorption capabilities of O. westti were different for Cd, Ni, Cr, and Pb (0.974, 0.418, 0.620, and 0.261 mgg(-1), respectively) at 18 °C and pH 5.0. Furthermore, the removal efficiencies for Cd, Cr, Ni and Pb were observed from 55-95%, 61-93%, 59-89%, and 61-96%, respectively. The highest removal efficiency was observed for Cd and Cr from aqueous solution at acidic pH and low initial metal concentrations. However, the removal efficiencies of Ni and Pb were higher at high pH and high concentrations of metals in aqueous solution. The results summarized that O. westti is a suitable candidate for removal of selected toxic heavy metals from the aqueous solutions.


Chlorophyta/metabolism , Environmental Restoration and Remediation/methods , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental , Chlorophyta/chemistry , Environmental Restoration and Remediation/instrumentation , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Purification/instrumentation
...