Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Article En | MEDLINE | ID: mdl-38649007

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Benzoquinones , CCAAT-Enhancer-Binding Proteins , DNA Repair , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitination/drug effects , Benzoquinones/pharmacology , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , DNA Damage/drug effects
2.
Med Chem ; 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38425108

INTRODUCTION: Tyrosinase is a versatile, glycosylated copper-containing oxidase enzyme that mainly catalyzes the biosynthesis of melanin in mammals. Its overexpression leads to the formation of excess melanin, resulting in hyperpigmentary skin disorders, such as dark spots, melasma, freckles, etc. Therefore, inhibition of tyrosinase is a therapeutic approach for the treatment of hyperpigmentation. METHOD: The current study focused on evaluating tyrosinase inhibitory activities of triazole derivatives 1-20, bearing different substituents on the phenyl ring. 17 derivatives have shown a potent tyrosinase inhibition with IC50 values between 1.6 to 13 µM, as compared to the standard drug, i.e., kojic acid (IC50 = 24.1 ± 0.5 µM). Particularly, compounds 11 and 15 displayed 12 times more potent inhibitory effects than the kojic acid. RESULT: The structure-activity relationship revealed that substituting halogens at the C-4 position of the benzene ring renders remarkable anti-tyrosinase activities. Compounds 1-3 and 8 showed a competitive type of inhibition, while compounds 5, 11, and 15 showed a non-competitive mode of inhibition. Next, we performed molecular docking analyses to study the binding modes and interactions between the ligands (inhibitors) and the active site of the tyrosinase enzyme (receptor). Besides this, we have assessed the toxicity profile of inhibitors on the BJ human fibroblast cell line. CONCLUSION: The majority of the newly identified tyrosinase inhibitors were found to be noncytotoxic. The results presented herein form the basis of further studies on triazole derivatives as potential drug leads against tyrosinase-related diseases.

4.
Front Pharmacol ; 15: 1366459, 2024.
Article En | MEDLINE | ID: mdl-38533260

The development of resistance to carbapenems in Klebsiella pneumoniae due to the production of metallo-ß-lactamases (MBLs) is a critical public health problem because carbapenems are the last-resort drugs used for treating severe infections of extended-spectrum ß-lactamases (ESBLs) producing K. pneumoniae. Restoring the activity of carbapenems by the inhibition of metallo-ß-lactamases is a valuable approach to combat carbapenem resistance. In this study, two well-characterized clinical multidrug and carbapenem-resistant K. pneumoniae isolates were used. The sub-inhibitory concentrations of pantoprazole and the well-reported metallo-ß-lactamase inhibitor captopril inhibited the hydrolytic activities of metallo-ß-lactamases, with pantoprazole having more inhibiting activities. Both drugs, when used in combination with meropenem, exhibited synergistic activities. Pantoprazole could also downregulate the expression of the metallo-ß-lactamase genes bla NDM and bla VIM. A docking study revealed that pantoprazole could bind to and chelate zinc ions of New Delhi and Verona integron-encoded MBL (VIM) enzymes with higher affinity than the control drug captopril and with comparable affinity to the natural ligand meropenem, indicating the significant inhibitory activity of pantoprazole against metallo-ß-lactamases. In conclusion, pantoprazole can be used in combination with meropenem as a new strategy for treating serious infections caused by metallo-ß-lactamases producing K. pneumoniae.

5.
J Bioenerg Biomembr ; 56(2): 125-139, 2024 Apr.
Article En | MEDLINE | ID: mdl-38095733

Viruses are microscopic biological entities that can quickly invade and multiply in a living organism. Each year, over 36,000 people die and nearly 400 million are infected with the dengue virus (DENV). Despite dengue being an endemic disease, no targeted and effective antiviral peptide resource is available against the dengue species. Antiviral peptides (AVPs) have shown tremendous ability to fight against different viruses. Accelerating antiviral drug discovery is crucial, particularly for RNA viruses. DDX3X, a vital cell component, supports viral translation and interacts with TRPV4, regulating viral RNA metabolism and infectivity. Its diverse signaling pathway makes it a potential therapeutic target. Our study focuses on inhibiting viral RNA translation by blocking the activity of the target gene and the TRPV4-mediated Ca2+ cation channel. Six major proteins from camel milk were first extracted and split with the enzyme pepsin. The antiviral properties were then analyzed using online bioinformatics programs, including AVPpred, Meta-iAVP, AMPfun, and ENNAVIA. The stability of the complex was assessed using MD simulation, MM/GBSA, and principal component analysis. Cytotoxicity evaluations were conducted using COPid and ToxinPred. The top ten AVPs, determined by optimal scores, were selected and saved for docking studies with the GalaxyPepDock tools. Bioinformatics analyses revealed that the peptides had very short hydrogen bond distances (1.8 to 3.6 Å) near the active site of the target protein. Approximately 76% of the peptide residues were 5-11 amino acids long. Additionally, the identified peptide candidates exhibited desirable properties for potential therapeutic agents, including a net positive charge, moderate toxicity, hydrophilicity, and selectivity. In conclusion, this computational study provides promising insights for discovering peptide-based therapeutic agents against DENV.


Dengue Virus , Dengue , Humans , Antimicrobial Peptides , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/pharmacology , Dengue/drug therapy , Dengue Virus/genetics , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , RNA, Viral/genetics , TRPV Cation Channels , Virus Replication
6.
PLoS One ; 18(11): e0287944, 2023.
Article En | MEDLINE | ID: mdl-37939069

Tilapia Lake Virus (TiLV) is a disease that affects tilapia fish, causing a high rate of sudden death at any stage in their life cycle. Unfortunately, there are currently no effective antiviral drugs or vaccines to prevent or control the progression of this disease. Researchers have discovered that the CRM1 protein plays a critical function in the development and spreading of animal viruses. By inhibiting CRM1, the virus's spread in commercial fish farms can be suppressed. With this in mind, this study intended to identify potential antiviral drugs from two different tropical mangrove plants from tropical regions: Heritiera fomes and Ceriops candolleana. To identify promising compounds that target the CRM1 protein, a computer-aided drug discovery approach is employed containing molecular docking, ADME (absorption, distribution, metabolism and excretion) analysis, toxicity assessment as well as molecular dynamics (MD) simulation. To estimate binding affinities of all phytochemicals, molecular docking is used and the top three candidate compounds with the highest docking scores were selected, which are CID107876 (-8.3 Kcal/mol), CID12795736 (-8.2 Kcal/mol), and CID12303662 (-7.9 Kcal/mol). We also evaluated the ADME and toxicity properties of these compounds. Finally, MD simulation was conducted to analyze the stability of the protein-ligand complex structures and confirm the suitability of these compounds. The computational study demonstrated that the phytochemicals found in H. fomes and C. candolleana could potentially serve as important inhibitors of TiLV, offering practical utility. However, further in vivo investigations are necessary to investigate and potentially confirm the effectiveness of these compounds as antiviral drugs against the virus TiLV.


Anti-HIV Agents , Fish Diseases , Tilapia , Viruses , Animals , Antiviral Agents/pharmacology , Molecular Docking Simulation , Fish Diseases/drug therapy , Drug Design , Molecular Dynamics Simulation
7.
Front Pharmacol ; 14: 1208044, 2023.
Article En | MEDLINE | ID: mdl-37361202

The human intestinal microbiota, also known as the gut microbiota, comprises more than 100 trillion organisms, mainly bacteria. This number exceeds the host body cells by a factor of ten. The gastrointestinal tract, which houses 60%-80% of the host's immune cells, is one of the largest immune organs. It maintains systemic immune homeostasis in the face of constant bacterial challenges. The gut microbiota has evolved with the host, and its symbiotic state with the host's gut epithelium is a testament to this co-evolution. However, certain microbial subpopulations may expand during pathological interventions, disrupting the delicate species-level microbial equilibrium and triggering inflammation and tumorigenesis. This review highlights the impact of gut microbiota dysbiosis on the development and progression of certain types of cancers and discusses the potential for developing new therapeutic strategies against cancer by manipulating the gut microbiota. By interacting with the host microbiota, we may be able to enhance the effectiveness of anticancer therapies and open new avenues for improving patient outcomes.

8.
Int J Nanomedicine ; 18: 2737-2756, 2023.
Article En | MEDLINE | ID: mdl-37250469

Neoplasm (Glioblastoma) and Alzheimer's disease (AD) comprise two of the most chronic psychological ailments. Glioblastoma is one of the aggressive and prevalent malignant diseases characterized by rapid growth and invasion resulting from cell migration and degradation of extracellular matrix. While the latter is characterized by extracellular plaques of amyloid and intracellular tangles of tau proteins. Both possess a high degree of resistance to treatment owing to the restricted transport of corresponding drugs to the brain protected by the blood-brain barrier (BBB). Development of optimized therapies using advanced technologies is a great need of today. One such approach is the designing of nanoparticles (NPs) to facilitate the drug delivery at the target site. The present article elaborates the advances in nanomedicines in treatment of both AD as well as Gliomas. The intention of this review is to provide an overview of different types of NPs with their physical properties emphasizing their importance in traversing the BBB and hitting the target site. Further, we discuss the therapeutic applications of these NPs along with their specific targets. Multiple overlapping factors with a common pathway in development of AD and Glioblastoma are discussed in details that will assist the readers in developing the conceptual approach to target the NP for an aging population in the given circumstances with limitations of currently designed NPs, and the challenges to meet and the future perspectives.


Alzheimer Disease , Glioblastoma , Glioma , Nanoparticles , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Nanomedicine , Glioma/drug therapy , Brain/metabolism , Blood-Brain Barrier/metabolism , Drug Delivery Systems , Nanoparticles/therapeutic use
9.
Inflammopharmacology ; 31(3): 1199-1221, 2023 Jun.
Article En | MEDLINE | ID: mdl-37060398

Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.


Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Nanomedicine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism , Drug Delivery Systems , Endothelial Cells/metabolism , Neoplasms/metabolism , Inflammation/drug therapy , Tumor Microenvironment
10.
ACS Cent Sci ; 9(3): 494-507, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36968527

Functional reintegration into lipid environments represents a major challenge for in vitro investigation of integral membrane proteins (IMPs). Here, we report a new approach, termed LMNG Auto-insertion Reintegration (LAiR), for reintegration of IMPs into lipid bilayers within minutes. The resulting proteoliposomes displayed an unprecedented capability to maintain proton gradients and long-term stability. LAiR allowed for monitoring catalysis of a membrane-bound, physiologically relevant polyisoprenoid quinone substrate by Escherichia coli cytochromes bo 3 (cbo 3) and bd (cbd) under control of the proton motive force. LAiR also facilitated bulk-phase detection and physiological assessment of the "proton leak" in cbo 3, a controversial catalytic state that previously was only approachable at the single-molecule level. LAiR maintained the multisubunit integrity and higher-order oligomeric states of the delicate mammalian F-ATP synthase. Given that LAiR can be applied to both liposomes and planar membrane bilayers and is compatible with IMPs and lipids from prokaryotic and eukaryotic sources, we anticipate LAiR to be applied broadly across basic research, pharmaceutical applications, and biotechnology.

11.
Molecules ; 28(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36903287

Medicinal plants provide a wide range of active compounds that can be exploited to create novel medicines with minimal side effects. The current study aimed to identify the anticancer properties of Juniperus procera (J. procera) leaves. Here, we demonstrate that J. procera leaves' methanolic extract suppresses cancer cells in colon (HCT116), liver (HepG2), breast (MCF-7), and erythroid (JK-1) cell lines. By applying GC/MS, we were able to determine the components of the J. procera extract that might contribute to cytotoxicity. Molecular docking modules were created that used active components against cyclin-dependent kinase 5 (Cdk5) in colon cancer, aromatase cytochrome P450 in the breast cancer receptor protein, the -N terminal domain in the erythroid cancer receptor of the erythroid spectrin, and topoisomerase in liver cancer. The results demonstrate that, out of the 12 bioactive compounds generated by GC/MS analysis, the active ingredient 2-imino-6-nitro-2H-1-benzopyran-3-carbothiamide proved to be the best-docked chemical with the chosen proteins impacted by DNA conformational changes, cell membrane integrity, and proliferation in molecular docking studies. Notably, we uncovered the capacity of J. procera to induce apoptosis and inhibit cell growth in the HCT116 cell line. Collectively, our data propose that J. procera leaves' methanolic extract has an anticancer role with the potential to guide future mechanistic studies.


Antineoplastic Agents, Phytogenic , Juniperus , Neoplasms , Plants, Medicinal , Humans , Juniperus/chemistry , Methanol , Molecular Docking Simulation , Plant Extracts/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/chemistry
12.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 13.
Article En | MEDLINE | ID: mdl-36678617

Pancreatic cancer is a very deadly disease with a 5-year survival rate, making it one of the leading causes of cancer-related deaths globally. Focal adhesion kinase 1 (FAK1) is a ubiquitously expressed protein in pancreatic cancer. FAK, a tyrosine kinase that is overexpressed in cancer cells, is crucial for the development of tumors into malignant phenotypes. FAK functions in response to extracellular signals by triggering transmembrane receptor signaling, which enhances focal adhesion turnover, cell adhesion, cell migration, and gene expression. The ligand-based drug design approach was used to identify potential compounds against the target protein, which included molecular docking: ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamics (MD) simulation, and molecular mechanics generalized born surface area (MM-GBSA). Following the retrieval of twenty hits, four compounds were selected for further evaluation based on a molecular docking approach. Three newly discovered compounds, including PubChem CID24601203, CID1893370, and CID16355541, with binding scores of -10.4, -10.1, and -9.7 kcal/mol, respectively, may serve as lead compounds for the treatment of pancreatic cancer associated with FAK1. The ADME (absorption, distribution, metabolism, and excretion) and toxicity analyses demonstrated that the compounds were effective and nontoxic. However, further wet laboratory investigations are required to evaluate the activity of the drugs against the cancer.

13.
FEBS Lett ; 597(4): 547-556, 2023 02.
Article En | MEDLINE | ID: mdl-36460943

Cytochrome bd-I from Escherichia coli is a terminal oxidase in the respiratory chain that plays an important role under stress conditions. Cytochrome bd-I was thought to consist of the major subunits CydA and CydB plus the small CydX subunit. Recent high-resolution structures of cytochrome bd-I demonstrated the presence of an additional subunit, CydH/CydY (called CydH here), the function of which is unclear. In this report, we show that in the absence of CydH, cytochrome bd-I is catalytically active, can sustain bacterial growth and displays haem spectra and susceptibility for haem-binding inhibitors comparable to the wild-type enzyme. Removal of CydH did not elicit catalase activity of cytochrome bd-I in our experimental system. Taken together, in the absence of the CydH subunit cytochrome bd-I retained key enzymatic properties.


Escherichia coli Proteins , Escherichia coli , Cytochrome b Group/genetics , Cytochrome b Group/chemistry , Cytochromes/genetics , Cytochromes/chemistry , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Heme
14.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Article En | MEDLINE | ID: mdl-36432314

6-Mercaptopurine (6-MP) is a well-known immunosuppressive medication with proven anti-proliferative activities. 6-MP possesses incomplete and highly variable oral absorption due to its poor water solubility, which might reduce its anti-cancer properties. To overcome these negative effects, we developed neutral and positively charged drug-loaded liposomal formulations utilizing the thin-film hydration technique. The prepared liposomal formulations were characterized for their size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The average size of the prepared liposomes was between 574.67 ± 37.29 and 660.47 ± 44.32 nm. Positively charged liposomes (F1 and F3) exhibited a lower PDI than the corresponding neutrally charged ones (F2 and F4). Entrapment efficiency was higher in the neutral liposomes when compared to the charged formulation. F1 showed the lowest IC50 against HepG2, HCT116, and MCF-7 cancer cells. HepG2 cells treated with F1 showed the highest level of inhibition of cell proliferation with no evidence of apoptosis. Cell cycle analysis showed an increase in the G1/G0 and S phases, along with a decrease in the G2/M phases in the cell lines treated with drug loaded positively charged liposomes when compared to free positive liposomes, indicating arrest of cells in the S phase due to the stoppage of priming and DNA synthesis outside the mitotic phase. As a result, liposomes could be considered as an effective drug delivery system for treatment of a variety of cancers; they provide a chance that a nanoformulation of 6-MP will boost the cytotoxicity of the drug in a small pharmacological dose which provides a dosage advantage.

15.
J Fungi (Basel) ; 8(7)2022 Jun 29.
Article En | MEDLINE | ID: mdl-35887444

Candida albicans is the most dominant and prevalent cause of fungal infections in humans. Azoles are considered as first-line drugs for the treatment of these infections. However, their prolonged and insistent use has led to multidrug resistance and treatment failures. To overcome this, modification or derivatization of the azole ring has led to the development of new and effective antifungal molecules. In a previous study, we reported on the development of new triazole-based molecules as potential antifungal agents against Candida auris. In this study, the most potent molecules from the previous study were docked and simulated with lanosterol 14-alpha demethylase enzyme. These compounds were further evaluated for in vitro susceptibility testing against C. albicans. In silico results revealed favorable structural dynamics of the compounds, implying that the compounds would be able to effectively bind to the target enzyme, which was further manifested by the strong interaction of the test compounds with the amino acid residues of the target enzyme. In vitro studies targeting quantification of ergosterol content revealed that pta1 was the most active compound and inhibited ergosterol production by >90% in both drug-susceptible and resistant C. albicans isolates. Furthermore, RT-qPCR results revealed downregulation of ERG11 gene when C. albicans cells were treated with the test compound, which aligns with the decreased ergosterol content. In addition, the active triazole derivatives were also found to be potent inhibitors of biofilm formation. Both in silico and in vitro results indicate that these triazole derivatives have the potential to be taken to the next level of antifungal drug development.

16.
Molecules ; 27(13)2022 Jun 29.
Article En | MEDLINE | ID: mdl-35807415

The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.


Drug Design , Quantitative Structure-Activity Relationship , Computer-Aided Design , Drug Discovery/methods , Molecular Docking Simulation , Molecular Dynamics Simulation
17.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 20.
Article En | MEDLINE | ID: mdl-35631328

Merkel cell carcinoma (MCC) is a rare form of aggressive skin cancer mainly caused by Merkel cell polyomavirus (MCPyV). Most MCC tumors express MCPyV large T (LT) antigens and play an important role in the growth-promoting activities of oncoproteins. Truncated LT promotes tumorigenicity as well as host cell proliferation by activating the viral replication machinery, and inhibition of this protein in humans drastically lowers cellular growth linked to the corresponding cancer. Our study was designed with the aim of identifying small molecular-like natural antiviral candidates that are able to inhibit the proliferation of malignant tumors, especially those that are aggressive, by blocking the activity of viral LT protein. To identify potential compounds against the target protein, a computational drug design including molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamics (MD) simulation, and molecular mechanics generalized Born surface area (MM-GBSA) approaches were applied in this study. Initially, a total of 2190 phytochemicals isolated from 104 medicinal plants were screened using the molecular docking simulation method, resulting in the identification of the top five compounds having the highest binding energy, ranging between -6.5 and -7.6 kcal/mol. The effectiveness and safety of the selected compounds were evaluated based on ADME and toxicity features. A 250 ns MD simulation confirmed the stability of the selected compounds bind to the active site (AS) of the target protein. Additionally, MM-GBSA analysis was used to determine the high values of binding free energy (ΔG bind) of the compounds binding to the target protein. The five compounds identified by computational approaches, Paulownin (CID: 3084131), Actaealactone (CID: 11537736), Epigallocatechin 3-O-cinnamate (CID: 21629801), Cirsilineol (CID: 162464), and Lycoricidine (CID: 73065), can be used in therapy as lead compounds to combat MCPyV-related cancer. However, further wet laboratory investigations are required to evaluate the activity of the drugs against the virus.

18.
J Fungi (Basel) ; 8(5)2022 May 12.
Article En | MEDLINE | ID: mdl-35628759

Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited.

19.
Comput Intell Neurosci ; 2022: 3500552, 2022.
Article En | MEDLINE | ID: mdl-35535186

An important aspect of the diagnosis procedure in daily clinical practice is the analysis of dental radiographs. This is because the dentist must interpret different types of problems related to teeth, including the tooth numbers and related diseases during the diagnostic process. For panoramic radiographs, this paper proposes a convolutional neural network (CNN) that can do multitask classification by classifying the X-ray images into three classes: cavity, filling, and implant. In this paper, convolutional neural networks are taken in the form of a NASNet model consisting of different numbers of max-pooling layers, dropout layers, and activation functions. Initially, the data will be augmented and preprocessed, and then, the construction of a multioutput model will be done. Finally, the model will compile and train the model; the evaluation parameters used for the analysis of the model are loss and the accuracy curves. The model has achieved an accuracy of greater than 96% such that it has outperformed other existing algorithms.


Neural Networks, Computer , Stomatognathic Diseases , Algorithms , Humans , Radiography, Panoramic/methods , X-Rays
20.
J Fungi (Basel) ; 8(2)2022 Feb 20.
Article En | MEDLINE | ID: mdl-35205958

Candida auris, an evolving multidrug-resistant pathogenic yeast, is known for causing severe invasive infections associated with high mortality rates in hospitalized individuals. Distinct from other Candida species, C. auris can persist for longer periods on different surfaces and is resistant to all of the major classes of antifungal drugs. Therefore, there is an urgent need for new antimycotic drugs with improved efficacy and reduced toxicity. The development of new antifungals based on antimicrobial peptides from various sources is considered a promising alternative. In this study, we examined the in vitro anti-yeast activity of the human cathelicidin peptides LL-37 against clinical strains of C. auris alone and in combination with different antifungal drugs by broth microdilution assay. To understand the antifungal mechanism of action, cell envelopes, cell cycle arrest, and effect on oxidative stress enzymes were studied using standard protocols. The minimum inhibitory and fungicidal concentrations of cathelicidin LL-37 ranged from 25-100 and 50-200 µg/mL, respectively. A combination interaction in a 1:1 ratio (cathelicidin LL-37: antifungal drug) resulted in 70% synergy with fluconazole and 100% synergy with amphotericin B and caspofungin. Assessment of the C. auris membrane by using propidium iodide assay after exposure to cathelicidin LL-37 linked membrane permeabilization with inhibition of C. auris cell growth and viability. These results were backed up by scanning electron microscopy studies demonstrating that exposure with cathelicidin LL-37 caused C. auris cells to undergo extensive surface changes. Spectrophotometric analysis revealed that cathelicidin LL-37 caused oxidative stress in C. auris, as is evident from the significant increase in the activity of primary antioxidant enzymes. In addition, cathelicidin LL-37 inhibited the cell cycle and accumulated cells in the S phase. Therefore, these results specify the potential of cathelicidin LL-37 for developing a new and effective anti-Candida agent.

...