Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
J Inorg Biochem ; 256: 112569, 2024 Jul.
Article En | MEDLINE | ID: mdl-38701687

The clinical success of [223Ra]RaCl2 (Xofigo®) for the palliative treatment of bone metastases in patients with prostate cancer has highlighted the therapeutic potential of α-particle emission. Expanding the applicability of radium-223 in Targeted Alpha Therapy of non-osseous tumors is followed up with significant interest, as it holds the potential to unveil novel treatment options in the comprehensive management of cancer. Moreover, the use of barium radionuclides, like barium-131 and -135m, is still unfamiliar in nuclear medicine applications, although they can be considered as radium-223 surrogates for imaging purposes. Enabling these applications requires the establishment of chelators able to form stable complexes with radium and barium radionuclides. Until now, only a limited number of ligands have been suggested and these molecules have been primarily inspired by existing structures known for their ability to complex large metal cations. However, a systematic inspection of chelators specifically tailored to Ra2+ and Ba2+ has yet to be conducted. This work delves into a comprehensive investigation of a series of small organic ligands, aiming to unveil the coordination preferences of both radium-223 and barium-131/135m. Electronic binding energies of both metal cations to each ligand were theoretically computed via Density Functional Theory calculations (COSMO-ZORA-PBE-D3/TZ2P), while thermodynamic stability constants were experimentally determined for Ba2+-ligand complexes by potentiometry, NMR and UV-Vis spectroscopies. The outcomes revealed malonate, 2-hydroxypyridine 1-oxide and picolinate as the most favorable building blocks to design multidentate chelators. These findings serve as foundation guidelines, propelling the development of cutting-edge radium-223- and barium-131/135m-based radiopharmaceuticals for Targeted Alpha Therapy and theranostics of cancer.


Radium , Radium/chemistry , Radium/therapeutic use , Humans , Radioisotopes/chemistry , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Barium/chemistry , Alpha Particles/therapeutic use , Chelating Agents/chemistry , Chelating Agents/therapeutic use , Neoplasms/drug therapy , Theranostic Nanomedicine/methods , Metals, Alkaline Earth/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use
2.
Life (Basel) ; 14(3)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38541733

The aim of the present study consists of the evaluation of the biodistribution of a novel 68Ga-labeled radiopharmaceutical, [68Ga]Ga-NODAGA-Z360, injected into Balb/c nude mice through histopathological analysis on bioptic samples and radiomics analysis of positron emission tomography/computed tomography (PET/CT) images. The 68Ga-labeled radiopharmaceutical was designed to specifically bind to the cholecystokinin receptor (CCK2R). This receptor, naturally present in healthy tissues such as the stomach, is a biomarker for numerous tumors when overexpressed. In this experiment, Balb/c nude mice were xenografted with a human epidermoid carcinoma A431 cell line (A431 WT) and overexpressing CCK2R (A431 CCK2R+), while controls received a wild-type cell line. PET images were processed, segmented after atlas-based co-registration and, consequently, 112 radiomics features were extracted for each investigated organ / tissue. To confirm the histopathology at the tissue level and correlate it with the degree of PET uptake, the studies were supported by digital pathology. As a result of the analyses, the differences in radiomics features in different body districts confirmed the correct targeting of the radiopharmaceutical. In preclinical imaging, the methodology confirms the importance of a decision-support system based on artificial intelligence algorithms for the assessment of radiopharmaceutical biodistribution.

3.
EJNMMI Radiopharm Chem ; 8(1): 43, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38123869

BACKGROUND: Silver-111 is a promising ß--emitting radioisotope with ideal characteristics for targeted radionuclide therapy and associated single photon emission tomography imaging. Its decay properties closely resemble the clinically established lutetium-177, making it an attractive candidate for therapeutic applications. In addition, the clinical value of silver-111 is further enhanced by the existence of the positron-emitting counterpart silver-103, thus imparting a truly theranostic potential to this element. A so-fitting matching pair could potentially overcome the current limitations associated with the forced use of chemically different isotopes as imaging surrogates of lutetium-177, leading to more accurate and efficient diagnosis and treatment. However, the use of silver-111-based radiopharmaceuticals in vivo has faced obstacles due to the challenges related to its production and radiochemical separation from the target material. To address these issues, this study aims to implement a chromatographic separation methodology for the purification of reactor-produced silver-111. The ultimate goal is to achieve a ready-to-use formulation for the direct radiolabeling of tumour-seeking biomolecules. RESULTS: A two-step sequence chromatographic process was validated for cold Ag-Pd separation and then translated to the radioactive counterpart. Silver-111 was produced via the 110Pd(n,γ)111Pd nuclear reaction on a natural palladium target and the subsequent ß--decay of palladium-111. Silver-111 was chemically separated from the metallic target via the implemented chromatographic process by using commercially available LN and TK200 resins. The effectiveness of the separations was assessed by inductively coupled plasma optical emission spectroscopy and γ-spectrometry, respectively, and the Ag+ retrieval was afforded in pure water. Recovery of silver-111 was > 90% with a radionuclidic purity > 99% and a separation factor of around 4.21·10-4. CONCLUSIONS: The developed separation method was suitable to obtain silver-111 with high molar activity in a ready-to-use water-based formulation that can be directly employed for the labeling of radiotracers. By successfully establishing a robust and efficient production and purification method for silver-111, this research paves the way for its wider application in targeted radionuclide therapy and precision imaging.

4.
EJNMMI Radiopharm Chem ; 8(1): 38, 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37947909

BACKGROUND: The alpha-emitter radium-223 (223Ra) is presently used in nuclear medicine for the palliative treatment of bone metastases from castration-resistant prostate cancer. This application arises from its advantageous decay properties and its intrinsic ability to accumulate in regions of high bone turnover when injected as a simple chloride salt. The commercial availability of [223Ra]RaCl2 as a registered drug (Xofigo®) is a further additional asset. MAIN BODY: The prospect of extending the utility of 223Ra to targeted α-therapy of non-osseous cancers has garnered significant interest. Different methods, such as the use of bifunctional chelators and nanoparticles, have been explored to incorporate 223Ra in proper carriers designed to precisely target tumor sites. Nevertheless, the search for a suitable scaffold remains an ongoing challenge, impeding the diffusion of 223Ra-based radiopharmaceuticals. CONCLUSION: This review offers a comprehensive overview of the current role of radium radioisotopes in nuclear medicine, with a specific focus on 223Ra. It also critically examines the endeavors conducted so far to develop constructs capable of incorporating 223Ra into cancer-targeting drugs. Particular emphasis is given to the chemical aspects aimed at providing molecular scaffolds for the bifunctional chelator approach.

5.
Inorg Chem ; 62(50): 20777-20790, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37768780

Silver-111 is an attractive unconventional candidate for targeted cancer therapy as well as for single photon emission computed tomography and can be complemented by silver-103 for positron emission tomography noninvasive diagnostic procedures. However, the shortage of chelating agents capable of forming stable complexes tethered to tumor-seeking vectors has hindered their in vivo application so far. In this study, a comparative investigation of a series of sulfur-containing structural homologues, namely, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetraazacyclotetradecane (TE4S) was conducted to appraise the influence of different polyazamacrocyclic backbones on Ag+ complexation. The performances of these macrocycles were also compared with those of the previously reported Ag+/[111Ag]Ag+-chelator 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S). Nuclear magnetic resonance data supported by density functional theory calculations and X-ray crystallographic results gave insights into the coordination environment of these complexes, suggesting that all of the donor atoms are generally involved in the metal coordination. However, the modifications of the macrocycle topology alter the dynamic binding of the pendant arms or the conformation of the ring around the metal center. Combined pH/pAg-potentiometric and spectroscopic experiments revealed that the 12-member N4 backbone of DO4S forms the most stable Ag+ complex while both the enlargement and the shrinkage of the macrocyclic frame dwindle the stability of the complexes. Radiolabeling experiments, conducted with reactor-produced [111Ag]Ag+, evidenced that the thermodynamic stability trend is reflected in the ligand's ability to incorporate the radioactive ion at high molar activity, even in the presence of a competing cation (Pd2+), as well as in the integrity of the corresponding complexes in human serum. As a consequence, DO4S proved to be the most favorable candidate for future in vivo applications.


Chelating Agents , Silver , Humans , Chelating Agents/chemistry , Silver/chemistry , Precision Medicine , Radioisotopes , Magnetic Resonance Spectroscopy
6.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37762266

With the clear need for better cancer treatment, naturally occurring molecules represent a powerful inspiration. Recently, curcumin has attracted attention for its pleiotropic anticancer activity in vitro, especially against colorectal and prostate cancer cells. Unfortunately, these encouraging results were disappointing in vivo due to curcumin's low stability and poor bioavailability. To overcome these issues, herein, the synthesis of eight new pyrimidine-curcumin derivatives is reported. The compounds were fully characterized (1H/13C NMR (Nuclear Magnetic Resonance), LC-MS (Liquid Chromatography-Mass Spectrometri), UV-Vis spectroscopy), particularly their acid/base behavior; overall protonation constants were estimated, and species distribution, as a function of pH, was predicted, suggesting that all the compounds are in their neutral form at pH 7.4. All the compounds were extremely stable in simulated physiological media (phosphate-buffered saline and simulated plasma). The compounds were tested in vitro (48 h incubation treatment) to assess their effect on cell viability in prostate cancer (LNCaP and PC3) and colorectal cancer (HT29 and HCT116) cell lines. Two compounds showed the same anti-proliferative activity as curcumin against HCT116 cells and improved cytotoxicity against PC3 cells.


Curcumin , Male , Humans , Curcumin/pharmacology , Biological Availability , Antihypertensive Agents , Antimetabolites , Cell Survival
7.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 26.
Article En | MEDLINE | ID: mdl-37513841

The interest in silver radioisotopes of medical appeal (silver-103, silver-104m,g and silver-111) has been recently awakened by the versatile nature of their nuclear decays, which combine emissions potentially suitable for non-invasive imaging with emissions suited for cancer treatment. However, to trigger their in vivo application, the production of silver radioisotopes in adequate amounts, and with high radionuclidic purity and molar activity, is a key prerequisite. This review examines the different production routes of silver-111, silver-103 and silver-104m,g providing a comprehensive critical overview of the separation and purification strategies developed so far. Aspects of quality (radiochemical, chemical and radionuclidic purity) are also emphasized and compared with the aim of pushing towards the future implementation of this theranostic triplet in preclinical and clinical contexts.

8.
Inorg Chem ; 62(50): 20621-20633, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37115633

The biologically triggered reduction of Cu2+ to Cu+ has been postulated as a possible in vivo decomplexation pathway in 64/67Cu-based radiopharmaceuticals. In an attempt to hinder this phenomenon, we have previously developed a family of S-containing polyazamacrocycles based on 12-, 13-, or 14-membered tetraaza rings able to stabilize both oxidation states. However, despite the high thermodynamic stability of the resulting Cu2+/+ complexes, a marked [64Cu]Cu2+ release was detected in human serum, likely as a result of the partially saturated coordination sphere around the copper center. In the present work, a new hexadentate macrocyclic ligand, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), was synthesized by hypothesizing that a smaller macrocyclic backbone could thwart the observed demetalation by fully encapsulating the copper ion. To unveil the role of the S donors in the metal binding, the corresponding alkyl analogue 1,4,7-tris-n-butyl-1,4,7-triazacyclononane (TACN-n-Bu) was considered as comparison. The acid-base properties of the free ligands and the kinetic, thermodynamic, and structural properties of their Cu2+ and Cu+ complexes were investigated in solution and solid (crystal) states through a combination of spectroscopic and electrochemical techniques. The formation of two stable mononuclear species was detected in aqueous solution for both ligands. The pCu2+ value for NO3S at physiological pH was 6 orders of magnitude higher than that computed for TACN-n-Bu, pointing out the significant stabilizing contribution arising from the Cu2+-S interactions. In both the solid state and solution, Cu2+ was fully embedded in the ligand cleft in a hexacoordinated N3S3 environment. Furthermore, NO3S exhibited a remarkable ability to form a stable complex with Cu+ through the involvement of all of the donors in the coordination sphere. Radiolabeling studies evidenced an excellent affinity of NO3S toward [64Cu]Cu2+, as quantitative incorporation was achieved at high apparent molar activity (∼10 MBq/nmol) and under mild conditions (ambient temperature, neutral pH, 10 min reaction time). Human serum stability assays revealed an increased stability of [64Cu][Cu(NO3S)]2+ when compared to the corresponding complexes formed by 12-, 13-, or 14-membered tetraaza rings.

9.
Molecules ; 28(7)2023 Apr 04.
Article En | MEDLINE | ID: mdl-37049995

Natural products often provide a pool of pharmacologically relevant precursors for the development of various drug-related molecules. In this review, the research performed on some radiolabeled chalcone derivatives characterized by the presence of the α-ß unsaturated carbonyl functional group as potential radiotracers for the imaging of ß-amyloids plaques will be summarized. Chalcones' structural modifications and chemical approaches which allow their radiolabeling with the most common SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) radionuclides will be described, as well as the state of the art regarding their in vitro binding affinity and in vivo biodistribution and pharmacokinetics in preclinical studies. Moreover, an explanation of the rationale behind their potential utilization as probes for Alzheimer's disease in nuclear medicine applications will be provided.


Alzheimer Disease , Chalcone , Chalcones , Humans , Amyloid beta-Peptides/metabolism , Chalcone/metabolism , Chalcones/chemistry , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/metabolism , Tissue Distribution , Brain/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon
10.
Appl Radiat Isot ; 190: 110508, 2022 Dec.
Article En | MEDLINE | ID: mdl-36283328

111Ag-perturbed angular correlation of γ-rays (PAC) spectroscopy provides information on the nuclear quadrupole interactions, and thereby on the local structure and dynamics of the silver ion binding site. Brownian rotational motion, i.e. rotational diffusion, of 111Ag-labeled molecules will significantly affect the PAC spectra. Here we illustrate this effect, by simulating 111Ag PAC spectra for 111Ag-labeled molecules with molecular masses spanning from 102 to 106 g/mol, reflecting a span from fast (small molecules) to slow (large molecules) rotational diffusion on the PAC time scale. The simulated spectra are compared to 111Ag-PAC data obtained from a pilot study involving 111Ag(I) bound to a designed chelator exhibiting fast reorientation in solution, as well as to 111Ag-labeled species formed by 111Ag(I) in human serum, exhibiting slow (or no) reorientation on the PAC time scale. The simulated and experimental data illustrate typical PAC signals that are likely to be observed in vivo, when following the fate of 111Ag-labeled compounds. Potential in vivo applications are stability studies of 111Ag-radiopharmaceuticals, dissociation studies of 111Ag from the labeled molecule followed by binding to another (bio)molecule, or binding of 111Ag-labeled probes to larger carriers such as proteins.


Cadmium , Humans , Pilot Projects , Spectrum Analysis/methods , Binding Sites , Gamma Rays
11.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 12.
Article En | MEDLINE | ID: mdl-35890151

Curcumin is known for its therapeutic properties; among these, antioxidant, anti-inflammatory and anti-cancer ones stand out. Besides, curcumin metal complexes have shown widespread application in medicine and can be exploited as lead structures for developing metal-based drugs. Unfortunately, curcumin is poorly bioavailable, mainly due to its instability in physiological conditions; this weakness is tightly connected to the presence of the ß-diketo moiety undergoing tautomeric equilibrium. Stability and metal-chelating ability can be tuned by modulating the electronic effects and steric hindrance close to the ß-diketo moiety; in addition, formation of a metal complex shifts the tautomeric equilibrium towards the ß-keto-enol form and increases stability in biological media. Among the metals used in clinical therapy, gallium nitrate has shown to have significant antitumor activity against non-Hodgkin lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents with improved therapeutic activity. Curcuminoids have demonstrated high affinity for gallium(III), allowing the formation of stable positively charged M:L 1:2 ß-diketonate complexes that benefit from the therapeutic activity of both the metal and the ligand. Seven new curcumin derivatives were synthesized and completely characterized. The new derivatives retain the solvent-dependent keto-enol tautomerism, with the prevalence of the diketo form in aqueous solution. Enhanced stability in simulated physiological conditions was observed in comparison to the lead compound curcumin. The presence of Ga3+ anticipates the dissociation of the enolic proton, allowing chelate complex formation, and simultaneously it shifts the tautomeric equilibrium towards the keto-enol form. A complete 1H/13C NMR and UV-Vis study was performed to define the metal-to-ligand stoichiometry ratio and the overall stability constants. In addition, we demonstrated that some of the derivatives have increased antiproliferative activity on colon cancer cells compared to curcumin and antioxidant properties. On the whole, the synthesized curcumin-based molecules may act as new gallium(III) chelators with improved stability with respect to curcumin and could open interesting perspectives for the development of novel therapeutic agents for cancer.

12.
Molecules ; 27(13)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35807404

Copper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu2+-Cu+ redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu2+ and Cu+. In this work, the labelling performances of a series of S-rich polyazamacrocyclic chelators with [64Cu]Cu2+ and the stability of the [64Cu]Cu-complexes thereof were evaluated. Among the chelators considered, the best results were obtained with 1,7-bis [2-(methylsulfanyl)ethyl]-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). DO2A2S was labelled at high molar activities in mild reaction conditions, and its [64Cu]Cu2+ complex showed excellent integrity in human serum over 24 h. Biodistribution studies in BALB/c nude mice performed with [64Cu][Cu(DO2A2S)] revealed a behavior similar to other [64Cu]Cu-labelled cyclen derivatives characterized by high liver and kidney uptake, which could either be ascribed to transchelation phenomena or metabolic processing of the intact complex.


Copper Radioisotopes , Precision Medicine , Animals , Chelating Agents , Mice , Mice, Nude , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Tissue Distribution
13.
Int J Mol Sci ; 22(14)2021 Jul 10.
Article En | MEDLINE | ID: mdl-34299029

Curcumin is a natural occurring molecule that has aroused much interest among researchers over the years due to its pleiotropic set of biological properties. In the nuclear medicine field, radiolabelled curcumin and curcumin derivatives have been studied as potential radiotracers for the early diagnosis of Alzheimer's disease and cancer. In the present review, the synthetic pathways, labelling methods and the preclinical investigations involving these radioactive compounds are treated. The studies entailed chemical modifications for enhancing curcumin stability, as well as its functionalisation for the labelling with several radiohalogens or metal radionuclides (fluorine-18, technetium-99m, gallium-68, etc.). Although some drawbacks have yet to be addressed, and none of the radiolabelled curcuminoids have so far achieved clinical application, the studies performed hitherto provide useful insights and lay the foundation for further developments.


Antineoplastic Agents/chemistry , Chemistry, Pharmaceutical , Curcumin/chemistry , Radiopharmaceuticals/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Curcumin/administration & dosage , Curcumin/pharmacokinetics , Humans , Molecular Imaging , Tissue Distribution
14.
Clin Case Rep ; 9(3): 1060-1065, 2021 Mar.
Article En | MEDLINE | ID: mdl-33768783

Clinical use of topical ascorbic acid solution could have both the role as an adjunct to consolidated therapies and as an alternative to them, for the treatment of BCC and SCC of the skin.

15.
Molecules ; 26(4)2021 Feb 09.
Article En | MEDLINE | ID: mdl-33572353

The cholecystokinin-2 receptor (CCK-2R) is overexpressed in several human cancers but displays limited expression in normal tissues. For this reason, it is a suitable target for developing specific radiotracers. In this study, a nastorazepide-based ligand functionalized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator (IP-001) was synthesized and labelled with indium-111. The radiolabeling process yielded >95% with a molar activity of 10 MBq/nmol and a radiochemical purity of >98%. Stability studies have shown a remarkable resistance to degradation (>93%) within 120 h of incubation in human blood. The in vitro uptake of [111In]In-IP-001 was assessed for up to 24 h on a high CCK-2R-expressing tumor cell line (A549) showing maximal accumulation after 4 h of incubation. Biodistribution and single photon emission tomography (SPECT)/CT imaging were evaluated on BALB/c nude mice bearing A549 xenograft tumors. Implanted tumors could be clearly visualized after only 4 h post injection (2.36 ± 0.26% ID/cc), although a high amount of radiotracer was also found in the liver, kidneys, and spleen (8.25 ± 2.21%, 6.99 ± 0.97%, and 3.88 ± 0.36% ID/cc, respectively). Clearance was slow by both hepatobiliary and renal excretion. Tumor retention persisted for up to 24 h, with the tumor to organs ratio increasing over-time and ending with a tumor uptake (1.52 ± 0.71% ID/cc) comparable to liver and kidneys.


Benzodiazepines/chemistry , Indium Radioisotopes/pharmacokinetics , Lung Neoplasms/metabolism , Radiopharmaceuticals/pharmacokinetics , Receptor, Cholecystokinin B/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Female , Humans , Indium Radioisotopes/administration & dosage , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Mice , Mice, Inbred BALB C , Mice, Nude , Radiopharmaceuticals/administration & dosage , Receptor, Cholecystokinin B/metabolism , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Appl Radiat Isot ; 164: 109258, 2020 Oct.
Article En | MEDLINE | ID: mdl-32819502

Research in the field of radiopharmaceuticals is increasingly promoted by the widespread and growing interest in applying nuclear medicine procedures in both disease diagnosis and treatment. The production of radionuclides of medical interest is however a challenging issue. Along with the conventional techniques other innovative approaches are being investigated and, among those, the ISOLPHARM project is being developed at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro). Such technique foresees the employment of the SPES ISOL facility to produce isobarically pure Radioactive Ion Beams (RIBs), obtained thanks to electromagnetic mass separation and collected on appropriate substrates. The latter are successively recovered and dissolved, allowing thus the chemical separation and harvesting of the nuclides of interest, free from any isotopic contaminant. Although ISOLPHARM can be potentially employed for most of the routinely used medical radioisotopes, its innovation potential is better expressed considering its capability to provide carrier free unconventional nuclides, difficult to produce with state-of-art techniques, such as 111Ag, a ß- emitter potentially interesting for therapeutic applications. Thus, in the framework of ISOLPHARM, INFN supported a two-years experiment, called ISOLPHARM_Ag, aimed at evaluating the feasibility of the production of a111Ag labelled radiopharmaceutical. The ISOL production yields are estimated by computing intensive Monte Carlo codes, that require an appropriate custom Information Technology infrastructure. The presented work is focused on the first part of the production chain including the capability to extract, ionize, and collect stable Ag beams with SPES technologies. MC calculations were used to estimate the expected 111Ag in-target yields, whereas experiments with stable Ag were performed to test the ionization, transport and collection of Ag beams.


Radiopharmaceuticals/chemical synthesis , Silver/chemistry , Drug Development , Monte Carlo Method , Particle Accelerators
17.
Inorg Chem ; 59(15): 10907-10919, 2020 Aug 03.
Article En | MEDLINE | ID: mdl-32658468

With a half-life of 7.45 days, silver-111 (ßmax 1.04 MeV, Eγ 245.4 keV [Iγ 1.24%], Eγ 342.1 keV [Iγ 6.7%]) is a promising candidate for targeted cancer therapy with ß- emitters as well as for associated SPECT imaging. For its clinical use, the development of suitable ligands that form sufficiently stable Ag+-complexes in vivo is required. In this work, the following sulfur-containing derivatives of tetraazacyclododecane (cyclen) have been considered as potential chelators for silver-111: 1,4,7,10-tetrakis(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO4S), (2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-tetrakis(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO4S4Me), 1,4,7-tris(2-(methylsulfanyl)ethyl)-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris(2-(methylsulfanyl)ethyl)-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), and 1,7-bis(2-(methylsulfanyl)ethyl)-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). Natural Ag+ was used in pH/Ag-potentiometric and UV-vis spectrophotometric studies to determine the metal speciation existing in aqueous NaNO3 0.15 M at 25 °C and the equilibrium constants of the complexes, whereas NMR and DFT calculations gave structural insights. Overall results indicated that sulfide pendant arms coordinate Ag+ allowing the formation of very stable complexes, both at acidic and physiological pH. Furthermore, radiolabeling, stability in saline phosphate buffer, and metal-competition experiments using the two ligands forming the strongest complexes, DO4S and DO4S4Me, were carried out with [111Ag]Ag+ and promising results were obtained.


Coordination Complexes/chemistry , Cyclams/chemistry , Radiopharmaceuticals/chemistry , Silver/chemistry , Sulfides/chemistry , Density Functional Theory , Hydrogen-Ion Concentration , Ligands , Molecular Structure , Thermodynamics
18.
J Inorg Biochem ; 204: 110954, 2020 03.
Article En | MEDLINE | ID: mdl-31838188

Curcumin metal complexes showed widespread applications in medicine and can be exploited as a lead structure for developing new tracers for nuclear medicine application. Herein, the synthesis, chemical characterization and radiolabelling with gallium-68 and scandium-44 of two new targeting vectors based on curcumin scaffolds and linked to the chelators 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) and 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine (AAZTA) are reported. Synthesis of the precursors could be achieved with a 13% and 11% yield and radiolabelling generally afforded rapid incorporation under mild conditions (>95%). Stability in physiological media (~75% after 2 h in human blood for [68Ga]Ga-/[44Sc]Sc-AAZTA-PC21 and ~60% for [68Ga]Ga-NODAGA-C21, respectively) are generally enhanced if compared to the previously radiolabelled analogues. MSn fragmentation experiments showed high stability of the AAZTA-PC21 structure mainly due to the pyrazole derivatization of the curcumin keto-enol moiety and a more feasible radiolabelling was noticed both with gallium-68 and scandium-44 mainly due to the AAZTA-chelator properties. [68Ga]Ga-NODAGA-C21 showed the most favorable lipophilicity value (logD = 1.3). Due to these findings, both compounds appear to be promising candidates for the imaging of colorectal cancer, but further studies such as in vitro uptake and in vivo biodistribution experiments are needed.


Chelating Agents/chemistry , Curcumin/analogs & derivatives , Gallium Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Scandium/chemistry , Animals , Chelating Agents/chemical synthesis , Chelating Agents/pharmacokinetics , Curcumin/chemical synthesis , Curcumin/chemistry , Curcumin/pharmacokinetics , Gallium Radioisotopes/pharmacokinetics , Humans , Radioactive Tracers , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Scandium/pharmacokinetics , Tissue Distribution
19.
Sci Rep ; 9(1): 3376, 2019 03 04.
Article En | MEDLINE | ID: mdl-30833583

MiRNAs are single stranded RNAs of 18-22 nucleotides. They are promising diagnostic and prognostic markers for several pathologies including tumors, neurodegenerative, cardiovascular and autoimmune diseases. In the present work the development and characterization of anti-miRNA radiolabeled probes based on peptide nucleic acids (PNAs) for potential non-invasive molecular imaging in vivo of giant cell arteritis are described. MiR-146a and miR-146b-5p were selected as targets because they have been found up-regulated in this disease. Anti-miR and scramble PNAs were synthesized and linked to carboxyfluorescein or DOTA. DOTA-anti-miR PNAs were then labelled with copper-64 (64Cu) to function as non-invasive molecular imaging tools. The affinity of the probes for the targets was assessed in vitro by circular dichroism and melting temperature. Differential uptake of fluorescein and 64Cu labeled anti-miRNA probes was tested on BCPAP and A549 cell lines, expressing different levels of miR-146a and -146b-5p. The experiments showed that the anti-miR-146a PNAs were more effective than the anti-miR-146b-5p PNAs. Anti-miR-146a PNAs could bind both miR-146a and miR-146b-5p. The uptake of fluorescein and 64Cu labeled anti-miR-146a PNAs was higher than that of the negative control scramble PNAs in miRNA expressing cells in vitro. 64Cu-anti-miR-146a PNAs might be further investigated for non-invasive PET imaging of miR-146 overexpressing diseases.


Antisense Elements (Genetics)/chemistry , Copper Radioisotopes/chemistry , Fluorescein/chemistry , MicroRNAs/analysis , Peptide Nucleic Acids/chemistry , A549 Cells , Antisense Elements (Genetics)/metabolism , Antisense Elements (Genetics)/pharmacokinetics , Cell Line, Tumor , Diagnostic Imaging/methods , Giant Cell Arteritis/diagnostic imaging , Humans , MicroRNAs/metabolism , Positron-Emission Tomography , RNA, Antisense/chemistry
20.
Molecules ; 24(3)2019 Feb 12.
Article En | MEDLINE | ID: mdl-30759785

Colorectal cancer is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women worldwide. We have recently reported that curcuminoid complexes labelled with gallium-68 have demonstrated preferential uptake in HT29 colorectal cancer and K562 lymphoma cell lines compared to normal human lymphocytes. In the present study, we report a new gallium-68-labelled curcumin derivative (68Ga-DOTA-C21) and its initial validation as marker for early detection of colorectal cancer. The precursor and non-radioactive complexes were synthesized and deeply characterized by analytical methods then the curcuminoid was radiolabelled with gallium-68. The in vitro stability, cell uptake, internalization and efflux properties of the probe were studied in HT29 cells, and the in vivo targeting ability and biodistribution were investigated in mice bearing HT29 subcutaneous tumour model. 68Ga-DOTA-C21 exhibits decent stability (57 ± 3% after 120 min of incubation) in physiological media and a curcumin-mediated cellular accumulation in colorectal cancer cell line (121 ± 4 KBq of radiotracer per mg of protein within 60 min of incubation). In HT29 tumour-bearing mice, the tumour uptake of 68Ga-DOTA-C21 is 3.57 ± 0.3% of the injected dose per gram of tissue after 90 min post injection with a tumour to muscle ratio of 2.2 ± 0.2. High amount of activity (12.73 ± 1.9% ID/g) is recorded in blood and significant uptake of the radiotracer occurs in the intestine (13.56 ± 3.3% ID/g), lungs (8.42 ± 0.8% ID/g), liver (5.81 ± 0.5% ID/g) and heart (4.70 ± 0.4% ID/g). Further studies are needed to understand the mechanism of accumulation and clearance; however, 68Ga-DOTA-C21 provides a productive base-structure to develop further radiotracers for imaging of colorectal cancer.


Colorectal Neoplasms/radiotherapy , Curcumin/chemistry , Curcumin/pharmacology , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/pharmacology , Heterocyclic Compounds, 1-Ring/chemistry , Animals , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Curcumin/metabolism , Female , Gallium Radioisotopes/metabolism , HT29 Cells , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Mice, Nude , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacology , Tissue Distribution
...