RESUMEN
Meat products containing Vitamin D3 (VD3) are an innovative option that could contribute to reducing deficiencies in this micronutrient. Designing nanoemulsions that carry VD3 is the first step in developing functional meat products. Thereby, this study investigated the impact of food components on the nanoemulsion properties. A central composite design was used to study the effects of pea protein (PP, 0.5-2.5%), safflower oil (SO, 5-15%), and salt (0-0.5%) on the nanoemulsion stability (ζ-potential and particle size) and the VD3 retention. Also, the optimized nanoemulsion carrying VD3 was incorporated into a meat matrix to study its retention after cooking. The combination of food components in the optimized nanoemulsion were SO = 9.12%, PP = 1.54%, and salt content = 0.4%, resulting in the predicted values of ζ-potential, particle size, and VD3 retention of -37.76 mV, 485 nm, and 55.1%, respectively. The VD3 that was nanoencapsulated and included in a meat product remained more stable after cooking than the VD3 that was not encapsulated. If a meat product is formulated with 5 or 10% safflower oil, the stability of the nanoencapsulated VD3 is reduced. This research contributes to developing functional meat products carrying nanoencapsulated vitamin D3 in natural food-grade components.
RESUMEN
Introduction: Obesity is a complex disease that predisposes individuals to cardiometabolic alterations. It leads to adipose tissue (AT) dysfunction, which triggers insulin resistance (IR). This suggests that people with obesity develop local IR first and systemic IR later. AT secretes extracellular vesicles, which may be physiopathologically associated with the development of IR. Our aim was to evaluate the effect of a high-fat diet on different parameters of adiposity in a rat model of early-stage obesity and to determine if these parameters are associated with markers of systemic IR. In addition, we sought to explore the relationship between fasting blood measures of IR (Triglycerides/High Density Lipoprotein-cholesterol [TAG/HDL-c] and Triglycerides-Glucose Index [TyG Index]) with the size of adipocyte-derived extracellular vesicles (adEV). Methods: We used a model of diet-induced obesity for ten weeks in Wistar rats exposed to a high-fat diet. Final weight gain was analyzed by Dual X-ray absorptiometry. Visceral obesity was measured as epididymal AT weight. IR was evaluated with fasting TyG Index & TAG/HDL-c, and adEV were isolated from mature adipocytes on ceiling culture. Results: In the high-fat diet group, glucose and triglyceride blood concentrations were higher in comparison to the control group (Log2FC, 0.5 and 1.5 times higher, respectively). The values for TyG Index and adEV size were different between the control animals and the high-fat diet group. Multiple linear regression analyses showed that adEV size can be significantly associated with the TyG Index value, when controlling for epididymal AT weight. Conclusion: Our results show that lipid and glucose metabolism, as well as the size and zeta potential of adEV are already altered in early-stage obesity and that adEV size can be significantly associated with liver and systemic IR, estimated by TyG Index.
RESUMEN
BACKGROUND: A compromised nutritional status jeopardizes a positive prognosis in acute lymphoblastic leukemia (ALL) patients. In low- and middle-income countries, ~ 50% of children with ALL are malnourished at diagnosis time, and undergoing antineoplastic treatment increases the risk of depleting their nutrient stores. Nutrition interventions are implemented in patients with cancer related malnutrition. We aimed to evaluate the effect of nutrition interventions in children diagnosed with ALL under treatment. METHODS: Using a predefined protocol, we searched for published or unpublished randomized controlled trials in: Cochrane CENTRAL, MEDLINE, EMBASE, LILACS, and SciELO, and conducted complementary searches. Studies where at least 50% of participants had an ALL diagnosis in children ≤ 18 years, active antineoplastic treatment, and a nutrition intervention were included. Study selection and data extraction were conducted independently by three reviewers, and assessment of the risk of bias by two reviewers. Results were synthesized in both tabular format and narratively. RESULTS: Twenty-five studies (out of 4097 records) satisfied the inclusion requirements. There was a high risk of bias in eighteen studies. Interventions analyzed were classified by compound/food (n = 14), micronutrient (n = 8), and nutritional support (n = 3). Within each group the interventions and components (dose and time) tested were heterogeneous. In relation to our primary outcomes, none of the studies reported fat-free mass as an outcome. Inflammatory and metabolic markers related to nutritional status and anthropometric measurements were reported in many studies but varied greatly across the studies. For our secondary outcomes, fat mass or total body water were not reported as an outcome in any of the studies. However, some different adverse events were reported in some studies. CONCLUSIONS: This review highlights the need to conduct high-quality randomized controlled trials for nutrition interventions in children with ALL, based on their limited number and heterogeneous outcomes. REGISTRATION OF THE REVIEW PROTOCOL: Guzmán-León AE, Lopez-Teros V, Avila-Prado J, Bracamontes-Picos L, Haby MM, Stein K. Protocol for a Systematic Review: Nutritional interventions in children with acute lymphoblastic leukemia undergoing an tineoplastic treatment. International prospective register of systematic reviews. 2021; PROSPERO CRD:42,021,266,761 ( https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=266761 ).
RESUMEN
Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats. A standard (SD) and high-fat diet (HFD) were formulated, and the same diets were supplemented with 1 g/kg of diet of PE (SD + PE and HFD + PE). Rats were fed these diets during an 8-week period. The HFD induced signs of dyslipidemia, but PE treatment countered the decrease in HDL. Relative mRNA expression (real-time PCR) of the hepatic HDL receptor (SCARB1) increased in both groups (SD + PE and HFD + PE), while the LDR receptor (LDLR) increased in SD + PE group. The mRNA expression of apolipoproteins APOA1 and APOB was unaffected. We conclude that PCs from AP can counter a diet-induced decrease in plasma HDL by acting on the mRNA expression of its hepatic receptor.
Asunto(s)
Dieta Alta en Grasa , Persea , Ratas , Masculino , Animales , Ratas Wistar , Dieta Alta en Grasa/efectos adversos , Persea/metabolismo , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
The search for an animal model to evaluate the allergenic potential of processed food products is still ongoing. Both the sensitization to ovalbumin (OVA) in different structural states and the allergic response triggered after intragastric or food challenges were assessed. BALB/c mice were sensitized intraperitoneally to OVA (50 µg) in different structural states (native OVA, N-OVA; denatured OVA, D-OVA; formaldehyde- and lysine-treated OVA, FK-OVA; denatured OVA-FK, OVA-DFK; peptides from pepsin digestion, Pep-OVA). Anti-OVA-specific IgE responses were evaluated using ELISA. Anaphylactic signs and mMCP-1 serum levels were evaluated after intragastric (2.0 mg/OVA) and food (0.41 mg/OVA) challenges. IgE reactivities to N-OVA and D-OVA were similar among groups (p > 0.05). After the challenges, all OVA-sensitized mice developed mild to severe anaphylactic signs (p < 0.05 vs. control). Mice sensitized to N-OVA and D-OVA had the highest mMCP-1 serum levels after challenges (p < 0.05 vs. control). Allergic responses were similar despite the different OVA doses used for the challenges. The N-OVA-sensitized murine model of egg allergy proposed in the present study holds the potential for evaluating the impact of food matrix composition and processing on the threshold of egg-allergic responses.
RESUMEN
OBJECTIVE: To develop N-(levodopa) chitosan derivatives through click chemistry to study their effect in brain cells.Significance: This study presents a proof-of-concept that macromolecules such as N-(Levodopa) chitosan derivatives traverse brain cell membranes and induce biomedical functionalities. METHODS: Through click chemistry, we developed N-(levodopa) chitosan derivatives. They were physically and chemically characterized by FT-IR, 1H-NMR, TGA and Dynamic Light Scattering analyses. Solution and nanoparticles of N-(levodopa) chitosan derivatives were tested in primary cell cultures from the postnatal rat olfactory bulb, substantia nigra and corpus callosum. Ca2+ imaging and UPLC experiments were used to investigate if the biomaterial modulated the brain cell physiology. RESULTS: N-(levodopa) chitosan derivatives induced intracellular Ca2+ responses in primary cell cultures of the rat brain. UPLC experiments indicated that levodopa attached to chitosan was converted into dopamine by brain cells. CONCLUSION: The present study shows that N-(levodopa) chitosan may be useful to develop new treatment strategies, which could serve as molecular reservoirs of biomedical drugs to treat degenerative disorders of the nervous system.
Asunto(s)
Quitosano , Levodopa , Ratas , Animales , Levodopa/farmacología , Quitosano/química , Química Clic/métodos , Espectroscopía Infrarroja por Transformada de Fourier , EncéfaloRESUMEN
Extracellular vesicles (EVs) are implicated in several biological conditions, including bone metabolism disturbances in breast cancer patients (BCPs). These disorders hinder the adjustment of nutrition interventions due to changes in bone mineral density (BMD). The biophysical properties of EVs (e.g., size or electrostatic repulsion) affect their cellular uptake, however, their clinical relevance is unclear. In this study, we aimed to investigate the association between the biophysical properties of the plasma-derived EVs and BMDs in BCPs who received an individualized nutrition intervention during the first six months of antineoplastic treatment. As part of the nutritional assessment before and after the intervention, body composition including bone densitometry and plasma samples were obtained. In 16 BCPs, EVs were isolated using ExoQuick® and their biophysical properties were analyzed using light-scattering techniques. We found that the average hydrodynamic diameter of large EVs was associated with femoral neck bone mineral content, lumbar spine BMD, and neoplasms' molecular subtypes. These results provide evidence that EVs play a role in BCPs' bone disorders and suggest that the biophysical properties of EVs may serve as potential nutritional biomarkers. Further studies are needed to evaluate EVs' biophysical properties as potential nutritional biomarkers in a clinical context.
Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Vesículas Extracelulares , Osteosarcoma , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores , Densidad ÓseaRESUMEN
A nutritional intervention promotes the loss of body and visceral fat while maintaining muscle mass in breast cancer patients. Extracellular vesicles (EVs) and their characteristics can be potential biomarkers of disease. Here, we explore the changes in the Zeta potential of EVs; the content of miRNA-30, miRNA-145, and miRNA-155; and their association with body composition and biomarkers of metabolic risk in breast cancer patients, before and 6 months after a nutritional intervention. Clinicopathological data (HER2neu, estrogen receptor, and Ki67), anthropometric and body composition data, and plasma samples were available from a previous study. Plasma EVs were isolated and characterized in 16 patients. The expression of miRNA-30, miRNA-145, and miRNA-155 was analyzed. The Zeta potential was associated with HER2neu (ß = 2.1; p = 0.00), Ki67 (ß = -1.39; p = 0.007), estrogen positive (ß = 1.57; p = 0.01), weight (ß = -0.09; p = 0.00), and visceral fat (ß = 0.004; p = 0.00). miRNA-30 was associated with LDL (ß = -0.012; p = 0.01) and HDL (ß = -0.02; p = 0.05). miRNA-155 was associated with visceral fat (ß = -0.0007; p = 0.05) and Ki67 (ß = -0.47; p = 0.04). Our results reveal significant associations between the expression of miRNA-30 and miRNA-155 and the Zeta potential of the EVs with biomarkers of metabolic risk and disease prognosis in women with breast cancer; particularly, the Zeta potential of EVs can be a new biomarker sensitive to changes in the nutritional status and breast cancer progression.
Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estado Nutricional , Antígeno Ki-67/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Biomarcadores/metabolismoRESUMEN
Extracellular vesicles (EVs) are nanoparticles secreted by cells under physiological and pathological conditions, such as metabolic diseases. In this context, EVs are considered potential key mediators in the physiopathology of obesity. It has been reported that EVs derived from adipose tissue (ADEVs) contribute to the development of a local inflammatory response that leads to adipose tissue dysfunction. In addition, it has been proposed that EVs are associated with the onset and progression of several obesity-related metabolic diseases such as insulin resistance. In particular, characterizing the molecular fingerprint of obesity-related ADEVs can provide a bigger picture that better reflects metabolic adaptation though PI3K/Akt/mTOR. Hence, in this review we describe the possible crosstalk communication of ADEVs with metabolically active organs and the intracellular response in the insulin signaling pathway.
Asunto(s)
Vesículas Extracelulares , Enfermedades Metabólicas , Tejido Adiposo/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Enfermedades Metabólicas/metabolismo , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Tree nuts are rich in polar (phenolic compounds) and non-polar (tocols) antioxidants, with recognized effects in the prevention of diseases such as cancer. These biomolecules possess antiproliferative activity on cancer cells; however, the combined effect of both types of compounds has been scarcely studied, and this approach could give valuable information on the real anticancer potential of tree nuts. In the present study, the antiproliferative activity of pure tocols and phenolic compounds, tocol- and phenolic-rich extracts (TRE and PRE, respectively) from tree nuts and the extracts combinations, was evaluated in four cancer (HeLa, MCF7, PC3, A549) and one control (ARPE) cell lines. The most sensible cell lines were HeLa and MCF7. TRE and PRE from nuts were chemically characterized; γ and δ tocopherols, total tocols, total tocopherols and total phenolic compounds were negatively correlated with cell viability in MCF7 cells. In HeLa cells, only δ and total tocopherols were negatively correlated with cell viability. TRE and PRE had a low effect in reducing cell viability of the cancer cell lines, the most effective extracts were those of emory oak acorn (EOA), pecan nut (PEC) and walnut (WAL), and these were further studied for their pharmacological interactions, using the combination index and the isobologram methods. Combinations of both extracts showed a synergistic and strongly synergistic behavior in the three nuts (EOA, PEC and WAL), with combination indexes between 0.12 and 0.55. These results highlight the need to understand the interactions among components found in complex natural extracts or food products in order to fully understand their bioactivities.
Asunto(s)
Neoplasias , Nueces , Células HeLa , Humanos , Nueces/química , Fenoles/análisis , Fenoles/farmacología , Extractos Vegetales/análisis , Extractos Vegetales/farmacología , Tocoferoles/análisisRESUMEN
The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.
RESUMEN
BALB/c mice can be orally sensitized to food proteins under acid suppressive medication, mimicking human exposure and triggering a human-like allergic immune response. However, the reproducibility of such an oral food allergy model remains questionable. Our aim was to evaluate the IgE responses triggered against ovalbumin (OVA) and cow's milk proteins (CMP) after intragastric (IG), either under gastric-acid suppression or not, or intraperitoneal (IP) sensitization in BALB/c mice. OVA (0.2 mg) and different concentrations of CMP were administered with/without the antacid sucralfate by the IG route. For IP sensitization, OVA or CMP (0.5 mg) were administered. ELISA was used to evaluate IgE responses. The IP sensitization protocols triggered more robust and consistent anti-OVA or anti-CMP IgE responses than the intragastric ones (with/without sucralfate) (p < 0.05). 2.7% (1/36), and 5.5% (3/54) of the mice that underwent the sucralfate-assisted IG protocol triggered IgE responses against OVA or CMP, respectively. All the mice were administered OVA or CMP via IP triggered detectable IgE responses. The IP sensitization model is more reliable than the IG one for evaluating the intrinsic sensitizing and/or allergenic potential of food proteins, even if IG immunizations are carried out under gastric-acid suppression.
RESUMEN
The hypoglycemic effect of functional phytochemicals has been evaluated in diabetic rodents but scarcely in its premorbid condition (prediabetes; PD). This study aimed to evaluate a mango (cv. Ataulfo) peel hydroethanolic (20:80) extract (MPE) for in vivo glycemic/lipidemic-normalizing effect and in vitro enzyme inhibitory (α-amylase/α-glucosidase) activity. The polyphenolic MPE (138 mg EAG.g−1, mainly gallic acid and mangiferin) with antioxidant capacity (DPPH⢠34 mgTE.g−1) was fed to PD rats (induction: high-fat diet (60% energy) + single dose streptozotocin (35 mg·kg−1), 4 weeks). At the 8th week, fasting glycemia (FG), oral glucose tolerance test, and insulin sensitivity indexes (HOMA-IR, HOMA-ß) > blood lipid-normalizing effect were documented as healthy controls > MPE > disease (PD) controls, which was possibly related to the extract's concentration−response in vitro enzyme inhibitory activity (IC50 ≈ 0.085 mg·mL−1). MPE is a rich source of glucose-lowering phytochemicals for the primary prevention of type 2 diabetes.
RESUMEN
Extracellular vesicles (EVs) have been identified as active components in cellular communication, which are easily altered both morphologically and chemically by the cellular environment and metabolic state of the body. Due to this sensitivity to the conditions of the cellular microenvironment, EVs have been found to be associated with disease conditions, including those associated with obesity and undernutrition. The sensitivity that EVs show to changes in the cellular microenvironment could be a reflection of early cellular alterations related to conditions of malnutrition, which could eventually be used in the routine monitoring and control of diseases or complications associated with it. However, little is known about the influence of malnutrition alone; that is, without the influence of additional diseases on the heterogeneity and specific content of EVs. To date, studies in "apparently healthy" obese patients show that there are changes in the size, quantity, and content of EVs, as well as correlations with some metabolic parameters (glucose, insulin, and serum lipids) in comparison with non-obese individuals. In light of these changes, a direct participation of EVs in the development of metabolic and cardiovascular complications in obese subjects is thought to exist. However, the mechanisms through which this process might occur are not yet fully understood. The evidence on EVs in conditions of undernutrition is limited, but it suggests that EVs play a role in the maintenance of homeostasis and muscle repair. A better understanding of how EVs participate in or promote cellular signaling in malnutrition conditions could help in the development of new strategies to treat them and their comorbidities.
Asunto(s)
Vesículas Extracelulares , Desnutrición , Biomarcadores/metabolismo , Comunicación Celular/fisiología , Vesículas Extracelulares/metabolismo , Humanos , Desnutrición/metabolismo , Obesidad/metabolismoRESUMEN
This study aimed to evaluate whether aluminum chloride (AlCl3) causes hematological changes in the peripheral blood of Sprague-Dawley (SD) rats. Five groups of female SD rats were intragastrically administered with 4 different concentrations of AlCl3 for 5 days a week for a total of 90 days. The aluminum concentration was determined via graphite furnace atomic absorption spectroscopy. Analysis of serum iron-kinetic profiles, blood cytometry outcomes, and blood smears of the blood samples. Scanning electron microscopy (SEM) and Raman spectroscopy were used to search for structural and ultrastructural changes, respectively. Blood aluminum concentration ranged 12.38-16.24 µg/L with no significant difference between experimental treatments. At the AlCl3 concentration of 40 mg Al/kg bw of rats/day, the mean ferritin value in the serum iron kinetic profile was 29.81±6.1 ng/mL, and this value showed a significant difference between experimental treatments. Blood cytometry revealed that there were 6.45-7.11×106 cells/µL erythrocytes, 8.91-9.32×103 cells/µL leukocytes, and 477.2-736.3×103 cells/µL platelets along with a hemoglobin of 37.38-41.93 g/dL and hematocrit level of 37.38-41.93%; the experimental treatments showed no significant differences. Erythrocyte structural analysis using SEM showed no differences between experimental treatments, whereas ultrastructural evaluation using Raman spectroscopy made it possible to identify the following bands: 741, 1123, 1350, 1578, and 1618 cm-1, which were respectively associated with the following vibrational modes and compounds: vibration of the tryptophan ring, asymmetric C-O-C stretching of glucose, C-H curve of tryptophan, C=C stretching of the heme group, and C-N stretching of the heme group, with no significant differences between experimental treatments. Therefore, AlCl3 administration does not induce ultrastructural changes in the erythrocyte membrane. This study revealed that serum ferritin concentration was the only parameter affected by AlCl3 exposure at 40 mg of Al/kg bw of rats/day.
RESUMEN
There is a lack of information about consumer understanding of functional foods. Sprouts provide beneficial compounds that can help counteract chronic noncommunicable diseases. The population of a region in Northwestern Mexico has a high prevalence of chronic degenerative disease, and there is a need to promote strategies to increase the consumption of foods that provide health benefits, including sprouts. However, there is a lack of information regarding the sale, consumption and perception of sprouts' healthy properties. A computer-assisted web-based survey (CAWI) was developed and distributed through social media to understand consumer knowledge of these foods' health effects and their consumption. The survey of people with diverse sociodemographic profiles indicated a 1-3 times per week consumption and they knew the health benefits of consuming sprouts. A total of 82% of respondents were conscious that sprout consumption could prevent chronic diseases, which may be related to education level (χ2: 0.001, p < 0.05). In order to expand on our findings, it is important to investigate the communication strategies used by sprout manufacturers, dieticians, nutritionists and health professionals about the health benefits of sprout products to promote their consumption.
RESUMEN
Avocado paste (AP) is a phenolic-rich byproduct of avocado oil extraction. The effects of sub-chronic consumption of diets supplemented with an AP phenolic extract (PE) were analyzed. A standard diet (SD), high-fat diet (HFD), and these supplemented with PE (SD + PE and HFD + PE) were used. Significantly increased satiety was observed in PE-supplemented groups, according to less food consumption (-15% in SD + PE vs. SD, and -11% in HFD + PE vs. HFD), without changes in weight gain or percentage of adipose tissue. PE-supplemented groups had an increased plasma concentration ( + 16% in SD + PE vs. SD, and +26% in HFD + PE vs. HFD) and relative mRNA expression (+74% in SD + PE vs. SD, and +46% in HFD + PE vs. HFD) of GLP-1; an increase in plasma leptin and adiponectin was independent of their mRNA expression. Our results suggest that AP-derived PE exerts a satiety effect in vivo, possibly mediated by GLP-1, leptin, and adiponectin. PRACTICAL APPLICATIONS: Minimizing food waste is a top priority in most of the world, thus, researchers seek methods to reintroduce industrial fruit and vegetable byproducts into the food processing chain. The present work highlights the potential of avocado byproducts as sources of bioactive phenolic compounds, whose sub-chronic consumption (8 weeks) exerts a satiety action in vivo. Avocado farming is resource-intensive, making it of relevance to producers and processing industries to avoid discarding its byproducts as much as possible.
Asunto(s)
Persea , Eliminación de Residuos , Adiponectina , Animales , Dieta Alta en Grasa/efectos adversos , Frutas , Péptido 1 Similar al Glucagón , Leptina , Extractos Vegetales/farmacología , Ratas , Ratas WistarRESUMEN
The meninges shield the nervous system from diverse, rather harmful stimuli and pathogens from the periphery. This tissue is composed of brain endothelial cells (BECs) that express diverse ion channels and chemical-transmitter receptors also expressed by neurons and glial cells to communicate with each other. However, information about the effects of ATP and angiotensin II on BECs is scarce, despite their essential roles in blood physiology. This work investigated in vitro if BECs from the meninges from rat forebrain respond to ATP, angiotensin II and high extracellular potassium, with intracellular calcium mobilizations and its second messenger-associated pathways. We found that in primary BEC cultures, both ATP and angiotensin II produced intracellular calcium responses linked to the activation of inositol trisphosphate receptors and ryanodine receptors, which led to calcium release from intracellular stores. We also used RT-PCR to explore what potassium channel subunits are expressed by primary BEC cultures and freshly isolated meningeal tissue, and which might be linked to the observed effects. We found that BECs mainly expressed the inward rectifier potassium channel subunits Kir1.1, Kir3.3, Kir 4.1 and Kir6.2. This study contributes to the understanding of the functions elicited by ATP and angiotensin II in BECs from rat meninges. SIGNIFICANCE OF THE STUDY: Brain endothelial cells (BECs) express diverse ion channels and membrane receptors, which they might use to communicate with neurons and glia. This work investigated in vitro, if BECs from the rat forebrain respond to angiotensin II and ATP with intracellular calcium mobilizations. We found that these cells did respond to said substances with intracellular calcium mobilizations linked to inositol trisphosphate and ryanodine receptor activation, which led to calcium release from intracellular stores. These findings are important because they might uncover routes of active communication between brain cells and endothelial cells.
Asunto(s)
Adenosina Trifosfato/farmacología , Angiotensina II/farmacología , Calcio/metabolismo , Células Endoteliales/efectos de los fármacos , Potasio/farmacología , Prosencéfalo/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Masculino , Canales de Potasio/genética , Canales de Potasio/metabolismo , Prosencéfalo/efectos de los fármacos , Ratas , Ratas WistarRESUMEN
BACKGROUND: Oxidative stress has been implicated in the pathogenesis and progression of diabetes mellitus. Both can damage the brain. Mango and its by-products are sources of bioactive compounds with antioxidant properties. We hypothesized that mango cv. 'Ataulfo' peel and pulp mitigate oxidative stress in the brain of streptozotocin-induced diabetic rats. RESULTS: Twenty-four male Wistar rats were divided into four groups: control, untreated diabetic (UD), diabetic treated with a mango-supplemented diet (MTD), and diabetic pretreated with a mango-supplemented diet (MPD). The rats were fed the different diets for 4 weeks after diabetes induction (MTD), or 2 weeks before and 4 weeks after induction (MPD). After the intervention, serum and brain (cerebellum and cortex) were collected to evaluate gene expression, enzyme activity, and redox biomarkers. Superoxide dismutase 2 (SOD2) expression increased in the cortex of the MTD group, whereas glutathione-S-transferase p1 (GSTp1) expression was higher in the cortex of the MTD group, and cortex and cerebellum of the MPD group. SOD1 activity was higher in the cerebellum and cortex of all diabetic groups, whereas GST activity increased in the cerebellum and cortex of the MPD group. Lipid peroxidation increased in the cerebellum and cortex of the UD group; however, a mango-supplemented diet prevented this increase in both regions, while also mitigating polyphagia and weight loss, and maintaining stable glycemia in diabetic rats. CONCLUSION: We propose that mango exerts potent neuroprotective properties against diabetes-induced oxidative stress. It can be an alternative to prevent and treat biochemical alterations caused by diabetes. © 2020 Society of Chemical Industry.
Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Mangifera/química , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Glucemia/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Frutas/química , Glutatión/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Estreptozocina , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismoRESUMEN
This study aimed to validate an analytical method to determine DNA concentration using standard reference material (NIST SRM 2372) and Sprague Dawley rat and human DNA. Microvolumes were used to analyse DNA samples. Linearity showed correlation coefficients higher than R ≥ 0.9950, and the precision value was ≤2% CV. Trueness based on bias and the percentage of recovery showed bias values lower than Z-test with a 95% confidence level and a recovery percentage within the range (% Rec = 100% ± 5%), and the stability of the samples was 60 days (2-4°C).