Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0304130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861531

RESUMEN

Whole Genome Sequencing (WGS) is a promising tool in the global fight against tuberculosis (TB). The aim of this study was to evaluate the use of WGS in routine conditions for detection of drug resistance markers and transmission clusters in a multidrug-resistant TB hot-spot area in Peru. For this, 140 drug-resistant Mycobacterium tuberculosis strains from Lima and Callao were prospectively selected and processed through routine (GenoType MTBDRsl and BACTEC MGIT) and WGS workflows, simultaneously. Resistance was determined in accordance with the World Health Organization mutation catalogue. Agreements between WGS and BACTEC results were calculated for rifampicin, isoniazid, pyrazinamide, moxifloxacin, levofloxacin, amikacin and capreomycin. Transmission clusters were determined using different cut-off values of Single Nucleotide Polymorphism differences. 100% (140/140) of strains had valid WGS results for 13 anti-TB drugs. However, the availability of final, definitive phenotypic BACTEC MGIT results varied by drug with 10-17% of invalid results for the seven compared drugs. The median time to obtain results of WGS for the complete set of drugs was 11.5 days, compared to 28.6-52.6 days for the routine workflow. Overall categorical agreement by WGS and BACTEC MGIT for the compared drugs was 96.5%. Kappa index was good (0.65≤k≤1.00), except for moxifloxacin, but the sensitivity and specificity values were high for all cases. 97.9% (137/140) of strains were characterized with only one sublineage (134 belonging to "lineage 4" and 3 to "lineage 2"), and 2.1% (3/140) were mixed strains presenting two different sublineages. Clustering rates of 3.6% (5/140), 17.9% (25/140) and 22.1% (31/140) were obtained for 5, 10 and 12 SNP cut-off values, respectively. In conclusion, routine WGS has a high diagnostic accuracy to detect resistance against key current anti-TB drugs, allowing results to be obtained through a single analysis and helping to cut quickly the chain of transmission of drug-resistant TB in Peru.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Perú/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Secuenciación Completa del Genoma/métodos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Polimorfismo de Nucleótido Simple , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Genoma Bacteriano , Masculino , Femenino
2.
BMC Infect Dis ; 13: 397, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23984854

RESUMEN

BACKGROUND: The aim of this study was to investigate the genetic diversity among Mycobacterium tuberculosis complex circulating in patients with no known risk factors for multi-drug resistant (MDR) tuberculosis (TB) living in a high MDR burden area and analyze the relationship between genotypes, primary drug resistance and age. METHODS: Samples were collected during January-July 2009. Isolates were tested for drug susceptibility to first-line drugs and were genotyped by spoligotyping and the 15-loci Mycobacterial Interspersed Repetitive Unit (MIRU15). RESULTS: Among the 199 isolates analyzed, 169 (84.9%) were identified in the SpolDB4.0 and 30 (15.1%) could not be matched to any lineage. The most prevalent lineage was Haarlem (29.6%), followed by T (15.6%), Beijing (14.1%), Latin American Mediterranean (12.6%) and U (8.5%). A few isolates belonged to the X and S clades (4.5%). Spoligotype analysis identified clustering among 148 of 169 isolates, whereas with MIRU15 all isolates were unique. Out of 197 strains; 31.5% were resistant to at least one drug, 7.5% were MDR and 22.3% showed any resistance to isoniazid. CONCLUSION: In contrast with other Latin-American countries where LAM lineage is the most predominant, we found the spoligotype 50 from the Haarlem lineage as the most common. None of the prevailing lineages showed a significant association with age or resistance to isoniazid and/or rifampicin.


Asunto(s)
Variación Genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adolescente , Adulto , Anciano , Antituberculosos/farmacología , Femenino , Genotipo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Perú , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA