Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; : PHYTO08230271R, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-37942864

RESUMEN

Passalora sequoiae is a foliar pathogen to conifer tree species. In this study, we conducted whole-genome and transcriptome analyses on isolates of P. sequoiae collected from symptomatic Leyland cypress leaves from a Christmas tree farm in Mississippi. The objectives for this research were to elucidate the pathogenicity mechanisms of P. sequoiae by characterizing the genome and transcriptome and possibly identify unique and shared predicted genes in comparison with non-conifer/canker and foliar pathogens in the family Mycosphaerellaceae. P. sequoiae was found to be similar to other foliar Mycosphaerellaceae pathogens and likely represents a hemibiotrophic lifestyle based on comparisons across pathogens. The genome and in planta transcriptome highlighted some unique features of P. sequoiae: the significant presence of chitin synthases and fructose-degrading carbohydrate-degrading enzymes, trans-AT PKS genes, and antibiotic gene clusters that were unique to P. sequoiae compared with the other Mycosphaerellaceae species genomes. Several transcripts that were highly expressed in planta were identified as effectors, yet the functions were not characterized. These targets provide ample resources to continue to characterize pathogen-conifer host interactions in conifer foliar pathogens. Furthermore, this research helps build genomic resources for an important plant pathogen on Leyland cypress that will further our ability to develop novel management practices that could begin with breeding for resistance.

2.
J Microbiol Methods ; 200: 106546, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931227

RESUMEN

Morphological similarities and fastidious development of increasingly emerging fungal needle pathogens impede accurate disease diagnosis and early detection. This study analyzed the specificity and sensitivity of polymerase chain reaction (PCR)-based markers developed for emerging needle cast pathogens Lophodermella concolor and L. montivaga co-occurring on Pinus contorta var. latifolia, and Bifusella linearis and L. arcuata on P. flexilis. To design primers, we utilized sequences of the internal transcribed spacer (ITS) region and single-copy gene (RH_2175) of the TCP-1/cpn60 chaperonin family searched through genomes of related species. In addition to the DNA of target and non-target fungal species that were used for primer assays, environmental samples with next generation sequencing data were used to evaluate primer sensitivity. Direct amplification using ITS primer pairs generated 248-260 bp amplicons and successfully differentiated the needle pathogens used in this study. Nested amplification of single-copy gene RH_2175 primer pairs which produced 409-527 bp amplicons detected Rhytismataceae species and discriminated both Lophodermella pathogens on P. contorta var. latifolia, respectively. While ITS-based primers had higher sensitivity than the 2175-based primers, both primer sets for L. concolor and L. montivaga detected their respective pathogens in asymptomatic and symptomatic needles. These molecular tools can help monitor and assess needle diseases for forest management and phytosanitary regimes.


Asunto(s)
Pinus , Pinus/genética , Pinus/microbiología , Reacción en Cadena de la Polimerasa
3.
Sci Rep ; 12(1): 7832, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551491

RESUMEN

Profiling the host-mycobiota interactions in healthy vs. diseased forest ecosystems helps understand the dynamics of understudied yet increasingly important threats to forest health that are emerging due to climate change. We analyzed the structural and functional changes of the mycobiota and the responses of Pinus contorta in the Lophodermella needle cast pathosystem through metabarcoding and metatranscriptomics. When needles transitioned from asymptomatic to symptomatic, dysbiosis of the mycobiota occurred, but with an enrichment of Lophodermella pathogens. Many pathogenicity-related genes were highly expressed by the mycobiota at the necrotrophic phase, showing an active pathogen response that are absent in asymptomatic needles. This study also revealed that Lophodermella spp. are members of a healthy needle mycobiota that have latent lifestyles suggesting that other pine needle pathogens may have similar biology. Interestingly, Pinus contorta upregulated defense genes in healthy needles, indicating response to fungal recognition, while a variety of biotic and abiotic stresses genes were activated in diseased needles. Further investigation to elucidate the possible antagonistic interplay of other biotic members leading to disease progression and/or suppression is warranted. This study provides insights into microbial interactions in non-model pathosystems and contributes to the development of new forest management strategies against emerging latent pathogens.


Asunto(s)
Ascomicetos , Pinus , Tracheophyta , Ascomicetos/genética , Ecosistema , Tracheophyta/genética , Transcriptoma
4.
PeerJ ; 9: e11435, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178437

RESUMEN

Increasing prevalence of conifer needle pathogens globally have prompted further studies on pathogen identification and a better understanding of phylogenetic relationships among needle pathogens. Several Lophodermella species can be aggressive pathogens causing needle cast in natural pine forests in the USA and Europe. However, their relationships with other Rhytismataceae species have historically been based on similarities of only limited phenotypic characters. Currently, no molecular studies have been completed to elucidate their relationships with other Lophodermella needle pathogens. This study collected and sequenced three gene loci, namely: internal transcribed spacer, large ribosomal subunit, and translation elongation factor 1-alpha, from five Lophodermella needle pathogens from North America (L. arcuata, L. concolor, L. montivaga) and Europe (L. conjuncta and L. sulcigena) to distinguish phylogeny within Rhytismatacaeae, including Lophophacidium dooksii. Phylogenetic analyses of the three loci revealed that all but L. conjuncta that were sampled in this study consistently clustered in a well-supported clade within Rhytismataceae. The multi-gene phylogeny also confirmed consistent nesting of L. dooksii, a needle pathogen of Pinus strobus, within the clade. Potential synapomorphic characters such as ascomata position and ascospore shape for the distinct clade were also explored. Further, a rhytismataceous species on P. flexilis that was morphologically identified as L. arcuata was found to be unique based on the sequences at the three loci. This study suggests a potential wider range of host species within the genus and the need for genetic characterization of other Lophodermella and Lophophacidium species to provide a higher phylogenetic resolution.

5.
Fungal Biol ; 124(2): 144-154, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32008755

RESUMEN

Phellinus noxius is a root-decay pathogen with a pan-tropical/subtropical distribution that attacks a wide range of tree hosts. For this study, genomic sequencing was conducted on P. noxius isolate P919-02W.7 from Federated States of Micronesia (Pohnpei), and its gene expression profile was analyzed using different host wood (Acer, Pinus, Prunus, and Salix) substrates. The assembled genome was 33.92 Mbp with 2954 contigs and 9389 predicted genes. Only small differences were observed in size and gene content in comparison with two other P. noxius genome assemblies (isolates OVT-YTM/97 from Hong Kong, China and FFPRI411160 from Japan, respectively). Genome analysis of P. noxius isolate P919-02W.7 revealed 488 genes encoding proteins related to carbohydrate and lignin metabolism, many of these enzymes are associated with degradation of plant cell wall components. Most of the transcripts expressed by P. noxius isolate P919-02W.7 were similar regardless of wood substrates. This study highlights the vast suite of decomposing enzymes produced by P. noxius, which suggests potential for degrading diverse wood substrates, even from temperate host trees. This information contributes to our understanding of pathogen ecology, mechanisms of wood decomposition, and pathogenic/saprophytic lifestyle.


Asunto(s)
Basidiomycota/genética , Genoma Fúngico , Phellinus/genética , Árboles/microbiología , Madera/metabolismo , Acer/microbiología , China , Proteínas Fúngicas/metabolismo , Variación Genética , Genómica , Japón , Lignina/metabolismo , Micronesia , Phellinus/enzimología , Filogeografía , Pinus/microbiología , Enfermedades de las Plantas/microbiología , Prunus/microbiología , Salix/microbiología , Transcriptoma , Madera/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...