Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Analyst ; 143(8): 1916-1923, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29620771

RESUMEN

Meningiomas represent one of the most frequently reported non-glial, primary brain and central nervous system (CNS) tumors. Meningiomas often display a spectrum of anomalous locations and morphological attributes, deterring their timely diagnosis. Majority of them are sporadic in nature and thus the present-day screening strategies, including radiological investigations, often result in misdiagnosis due to their aberrant and equivocal radiological facets. Therefore, it is pertinent to explore less invasive and patient-friendly biofluids such as serum for their screening and diagnostics. The utility of serum Raman spectroscopy in diagnosis and therapeutic monitoring of cancers has been reported in the literature. In the present study, for the first time, to the best of our knowledge, we have explored Raman spectroscopy to classify the sera of meningioma and control subjects. For this exploration, 35 samples each of meningioma and control subjects were accrued and the spectra revealed variance in the levels of DNA, proteins, lipids, amino acids and ß-carotene, i.e., a relatively higher protein, DNA and lipid content in meningioma. Subsequent Principal Component Analysis (PCA) and Principal Component-Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) and limited independent test data, in a patient-wise approach, yielded a classification efficiency of 92% and 80% for healthy and meningioma, respectively. Additionally, in the analogous analysis between healthy and different grades of meningioma, similar results were obtained. These results indicate the potential of Raman spectroscopy in differentiating meningioma. As present methods suffer from known limitations, with the prospective validation on a larger cohort, serum Raman spectroscopy could be an adjuvant/alternative approach in the clinical management of meningioma.


Asunto(s)
Neoplasias Meníngeas/diagnóstico , Meningioma/diagnóstico , Espectrometría Raman , Análisis Discriminante , Humanos , Neoplasias Meníngeas/sangre , Meningioma/sangre , Análisis de Componente Principal
2.
Oncotarget ; 9(17): 13530-13544, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29568375

RESUMEN

Adenocarcinomas are cancers originating from the gland forming cells of the colon and rectal lining, and are known to be the most common type of colorectal cancers. The current diagnosis strategies for colorectal cancers include biopsy, laboratory tests, and colonoscopy which are time consuming. Identification of protein biomarkers could aid in the detection of colon adenocarcinomas (CACs). In this study, tissue proteome of colon adenocarcinomas (n = 11) was compared with the matched control specimens (n = 11) using isobaric tags for relative and absolute quantitation (iTRAQ) based liquid chromatography-mass spectrometry (LC-MS/MS) approach. A list of 285 significantly altered proteins was identified in colon adenocarcinomas as compared to its matched controls, which are associated with growth and malignancy of the tumors. Protein interaction analysis revealed the association of altered proteins in colon adenocarcinomas with various transcription factors and their targets. A panel of nine proteins was validated using multiple reaction monitoring (MRM). Additionally, S100A9 was also validated using immunoblotting. The identified panel of proteins may serve as potential biomarkers and thereby aid in the detection of colon adenocarcinomas.

3.
Biochem Biophys Res Commun ; 495(1): 768-774, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146182

RESUMEN

Previous reports show that the desmosomal plaque protein plakophilin3 (PKP3) is essential for desmosome formation. Here, we report that PKP3 over-expression decreases calcium dependency for de novo desmosome formation and makes existing cell-cell adhesion junctions more resilient in low calcium medium due to an increase in desmocollin2 expression. PKP3 overexpression increases the stability of other desmosomal proteins independently of the increase in DSC2 levels and regulates desmosome formation and stability by a multimodal mechanism affecting transcription, protein stability and cell border localization of desmosomal proteins.


Asunto(s)
Adhesión Celular/fisiología , Desmocolinas/metabolismo , Desmosomas/fisiología , Desmosomas/ultraestructura , Placofilinas/metabolismo , Línea Celular , Humanos , Tamaño de la Partícula
4.
OMICS ; 21(5): 275-284, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28481733

RESUMEN

Gliomas are heterogeneous and most commonly occurring brain tumors. Blood-brain barrier restricts the entry of brain tumor proteins into blood stream thus limiting the usage of serum or plasma for proteomic analysis. Our study aimed at understanding the molecular basis of aggressiveness of various grades of brain tumors using isobaric tagging for relative and absolute quantification (iTRAQ) based mass spectrometry. Tissue proteomic analysis of various grades of gliomas was performed using four-plex iTRAQ. We labeled five sets (each set consists of control, grade-II, III, and IV tumor samples) of individual glioma patients using iTRAQ reagents. Significantly altered proteins were subjected to bioinformatics analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID). Various metabolic pathways like glycolysis, TCA-cycle, electron transport chain, lactate metabolism, and blood coagulation pathways were majorly observed to be perturbed in gliomas. Most of the identified proteins involved in redox reactions, protein folding, pre-messenger RNA (mRNA) processing, antiapoptosis, and blood coagulation were found to be upregulated in gliomas. Transcriptomics data of glioblastoma multiforme (GBM), low-grade gliomas (LGGs), and controls were downloaded from The Cancer Genome Atlas (TCGA) data portal and further analyzed using BRB-Array tools. Expression levels of a few significantly altered proteins like lactate dehydrogenase, alpha-1 antitrypsin, fibrinogen alpha chain, nucleophosmin, annexin A5, thioredoxin, ferritin light chain, thymosin beta-4-like protein 3, superoxide dismutase-2, and peroxiredoxin-1 and 6 showed a positive correlation with increasing grade of gliomas thereby offering an insight into molecular basis behind their aggressive nature. Several proteins identified in different grades of gliomas are potential grade-specific markers, and perturbed pathways provide comprehensive overview of molecular cues involved in glioma pathogenesis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioma/metabolismo , Glioma/patología , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , Biomarcadores de Tumor/genética , Biopsia , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Cromatografía Liquida , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/genética , Humanos , Espectrometría de Masas , Proteínas de Neoplasias/genética , Estadificación de Neoplasias , Proteómica
5.
J Proteomics ; 150: 341-350, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27565396

RESUMEN

Glioblastoma multiforme is Grade IV brain tumor associated with high mortality and limited therapeutics. Signal Transducer and Activator of Transcription 3 (STAT3) is persistently active in several cancers including gliomas, and plays a major role in disease progression and survival of glioma patients, thus being a potential therapeutic target for treatment. S3I201 and its analogs inhibit the transcriptional functions of STAT3 and reduce growth of tumor tissues. Here we have studied proteomic alteration associated with S3I201 treated U87 cells using 2-DE and Isobaric tags for relative and absolute quantitation coupled with mass spectrometry. This analysis revealed 136 differentially expressed proteins which were functionally classified with gene ontology analysis. Results showed metabolism, apoptosis, cytoskeletal behaviour, cell redox homeostasis and immune response as the most affected biological processes on S3I201 treatment. Apoptosis-inducing factor 1 mitochondrial, cyclophilin A and chloride intra-cellular channel protein 1 were found to be up-regulated which possibly contributes to its anti-tumorigenic function. Several glycolytic enzymes like phosphoglycerate mutase 1 were also found to be up-regulated and its expression was validated using immunoblot. Conclusively, our study shows the downstream effects of S3I201 in U87 glioma cells and suggests its therapeutic potential. SIGNIFICANCE: Gliomas with constitutive expression can be treated with STAT3 inhibitors. S3I201, a STAT3 inhibitor, reduces the growth of glioma cells thus could be studied further for its application as anti-glioma agent. This study investigated proteomic alteration associated with S3I201 in U87 cells using complementary proteomic approaches, and our findings suggest that S3I201 influences central metabolism, apoptosis, cytoskeletal behaviour, cell redox homeostasis and immune response as the most affected biological processes which altogether contribute to its anti-tumorigenic activity. Several proteins were identified which may serve as prognostic or predictive markers in GBM. Apoptosis-inducing factor 1 mitochondrial and cyclophilin A were identified as potential therapeutic targets and further investigations on these candidates may facilitate therapeutic development and suggests that GBM therapy can be improved by targeting cellular metabolism and by using immunotherapy.


Asunto(s)
Bencenosulfonatos/farmacología , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Proteoma/efectos de los fármacos , Ácidos Aminosalicílicos/farmacología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/patología , Humanos , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos
6.
Proteomics ; 16(19): 2557-2569, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27452627

RESUMEN

The discovery of DNA microarrays was a major milestone in genomics; however, it could not adequately predict the structure or dynamics of underlying protein entities, which are the ultimate effector molecules in a cell. Protein microarrays allow simultaneous study of thousands of proteins/peptides, and various advancements in array technologies have made this platform suitable for several diagnostic and functional studies. Antibody arrays enable researchers to quantify the abundance of target proteins in biological fluids and assess PTMs by using the antibodies. Protein microarrays have been used to assess protein-protein interactions, protein-ligand interactions, and autoantibody profiling in various disease conditions. Here, we summarize different microarray platforms with focus on its biological and clinical applications in autoantibody profiling and PTM studies. We also enumerate the potential of tissue microarrays to validate findings from protein arrays as well as other approaches, highlighting their significance in proteomics.


Asunto(s)
Autoanticuerpos/análisis , Análisis por Matrices de Proteínas/métodos , Animales , Humanos , Procesamiento Proteico-Postraduccional , Análisis de Matrices Tisulares
8.
Sci Rep ; 5: 13895, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370624

RESUMEN

The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification imperative. Here, we report autoantibody signatures across various grades of glioma serum samples and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein involved in cell migration, with probable prognostic potential. Another subcategory of patients where the IDH1 gene is mutated, are known to have better prognosis as compared to patients carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, emphasizing the need to explore biochemical alterations arising due to autoimmune responses in glioma.


Asunto(s)
Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Glioma/sangre , Glioma/inmunología , Proteoma , Proteómica , Biomarcadores , Glioma/patología , Humanos , Clasificación del Tumor , Proteómica/métodos
9.
OMICS ; 19(6): 329-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26415138

RESUMEN

Proteomics is at the epicenter of post-genomics biotechnologies that are currently driving the next generation system science. Moreover, proteomics is a truly global science. The 6(th) Annual Meeting of Proteomics Society, India (PSI) and International Conference on "Proteomics from Discovery to Function" held from December 7-9, 2014, was a transformative endeavor for global proteomics, bringing together the luminaries in the field of proteomics for the very first time in India. This meeting report presents the lessons learned and the highlights of this international scientific conference that was comprised of nine thematic sessions, pre- and post-conference workshops, and an opportunity to cultivate enduring collaborations for proteomics science to benefit both India and global society. The conference had an unforgettable impression on the participants: for the first time, India hosted past and present President and Council members from the Human Proteome Organization (HUPO), along with eminent scientists and young scholars from India and abroad in the field of proteomics at such a large scale, a major highlight of this international event. In all, the PSI 2014 was a milestone conference that has firmly poised the Indian life sciences community as a leading contributor to post-genomics life sciences, thus cultivating crucial trans-generational capacity and inspiration by recognizing the emerging scholars and omics systems scientists who can think and conduct science from cell to society.


Asunto(s)
Proteómica , Genómica , India , Proteoma/genética
10.
J Proteomics ; 127(Pt A): 7-17, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25868663

RESUMEN

After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India.


Asunto(s)
Investigación Biomédica , Proteómica , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...