Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39057889

RESUMEN

We report a two-step growth process of MoS2 nanoflakes using a low-pressure chemical vapor deposition technique. In the first step, a MoS2 layer was synthesized on a c-plane sapphire substrate. This layer was subsequently re-evaporated at a higher temperature to form mono- or few-layer MoS2 flakes. As a result, the close proximity re-evaporation enabled the growth of pristine MoS2 nanoflakes. Atomic force microscopy analysis confirmed the synthesis of nanoclusters/nanoflakes with lateral dimensions of over 10 µm and a flake height of approximately 1.3 nm, demonstrating bi-layer MoS2, whereas transmission electron microscopy analysis revealed triangular MoS2 nanoflakes, with a diffraction pattern proving the presence of single crystalline hexagonal MoS2. Raman data revealed the typical modes of high-quality MoS2 nanoflakes. Finally, we presented the photocurrent dependence of a MoS2-based photoresist under illumination with light-emitting diode of 405 nm wavelength. The measured current-voltage dependence across various luminous flux outlined the sensitivity of MoS2 to polarized light and thus opens further opportunities for applications in high-performance photodetectors with polarization sensitivity.

2.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446695

RESUMEN

[1,3,5]Triazino[1,2-a]benzimidazole-2-amines bearing heterocyclic moiety in 4-position were synthesized. The compounds were characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy. The molecular geometry and electron structure of these molecules were theoretically studied using density functional theory (DFT) methods. The molecular structure of the synthesized fused triazinobenzimidazole was confirmed to correspond to the 3,4-dihydrotriazinobenzimidazole structure through the analysis of spectroscopic NMR data and DFT calculations. The antinematodic activity was evaluated in vitro on isolated encapsulated muscle larvae (ML) of Trichinella spiralis. The results showed that the tested triazinobenzimidazoles exhibit significantly higher efficiency than the conventional drug used to treat trichinosis, albendazole, at a concentration of 50 µg/mL. The compound 3c substituted with a thiophen-2-yl moiety exhibited the highest anthelmintic activity, with a larvicidal effect of 58.41% at a concentration of 50 µg/mL after 24 h of incubation. Following closely behind, the pyrrole analog 3f demonstrated 49.90% effectiveness at the same concentration. The preliminary structure-anti-T. spiralis activity relationship (SAR) of the analogues in the series was discussed. The cytotoxicity of the benzimidazole derivatives against two normal fibroblast cells (3T3 and CCL-1) and two cancer human cell lines (MCF-7 breast cancer cells and chronic myeloid leukemia cells AR-230) was evaluated using the MTT-dye reduction assay. The screening results indicated that the compounds showed no cytotoxicity against the tested cell lines. An in silico study of the physicochemical and pharmacokinetic characteristics of the novel synthesized fused triazinobenzimidazoles showed that they were characterized by a significant degree of drug-likeness and optimal properties for anthelmintic agents.


Asunto(s)
Antihelmínticos , Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Estructura Molecular , Relación Estructura-Actividad , Antihelmínticos/farmacología , Bencimidazoles/farmacología , Bencimidazoles/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales
3.
Materials (Basel) ; 15(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35744227

RESUMEN

In the current work, the possibility of the recycling of technogenic CoCrMo material by electron beam melting is investigated. The influence of thermodynamic and kinetic parameters (temperature and melting time) on the behavior of the main components of the alloy (Co, Cr, and Mo) and other elements (Fe, Mn, Si, W, and Nb) present in it, and on the microstructure of the ingots obtained after e-beam processing is studied. The vapor pressure of the alloy is determined taking into account the activities of the main alloy components (Co, Cr, and Mo). The relative volatility of the metal elements present in the alloy was also evaluated. An assessment of the influence of the temperature and the retention time on the degree of elements removal from CoCrMo technogenic material was made. The results obtained show that the highest degree of refining is achieved at 1860 K and a residence time of 20 min. The conducted EDS analysis of the more characteristic phases observed on the SEM images of the samples shows distinct micro-segregation in the matrix composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA