Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 4696, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929092

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
J Neurosci ; 39(33): 6595-6607, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31182635

RESUMEN

Expressional changes of pain-associated genes in primary sensory neurons of DRG are critical for neuropathic pain genesis. DNA methyltransferase (DNMT)-triggered DNA methylation silences gene expression. We show here that DNMT1, a canonical maintenance methyltransferase, acts as the de novo DNMT and is required for neuropathic pain genesis likely through repressing at least DRG Kcna2 gene expression in male mice. Peripheral nerve injury upregulated DNMT1 expression in the injured DRG through the transcription factor cAMP response element binding protein-triggered transcriptional activation of Dnmt1 gene. Blocking this upregulation prevented nerve injury-induced DNA methylation within the promoter and 5'-untranslated region of Kcna2 gene, rescued Kcna2 expression and total Kv current, attenuated hyperexcitability in the injured DRG neurons, and alleviated nerve injury-induced pain hypersensitivities. Given that Kcna2 is a key player in neuropathic pain, our findings suggest that DRG DNMT1 may be a potential target for neuropathic pain management.SIGNIFICANCE STATEMENT In the present study, we reported that DNMT1, a canonical DNA maintenance methyltransferase, is upregulated via the activation of the transcription factor CREB in the injured DRG after peripheral nerve injury. This upregulation was responsible for nerve injury-induced de novo DNA methylation within the promoter and 5'-untranslated region of the Kcna2 gene, reductions in Kcna2 expression and Kv current and increases in neuronal excitability in the injured DRG. Since pharmacological inhibition or genetic knockdown of DRG DNMT1 alleviated nerve injury-induced pain hypersensitivities, DRG DNMT1 contributes to neuropathic pain genesis partially through repression of DRG Kcna2 gene expression.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Represión Epigenética/fisiología , Canal de Potasio Kv.1.2/metabolismo , Neuralgia/metabolismo , Neuronas Aferentes/metabolismo , Animales , Ganglios Espinales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/metabolismo
3.
J Neurosci ; 38(46): 9883-9899, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-30266739

RESUMEN

The transmission of normal sensory and/or acute noxious information requires intact expression of pain-associated genes within the pain pathways of nervous system. Expressional changes of these genes after peripheral nerve injury are also critical for neuropathic pain induction and maintenance. Methyl-CpG-binding domain protein 1 (MBD1), an epigenetic repressor, regulates gene transcriptional activity. We report here that MBD1 in the primary sensory neurons of DRG is critical for the genesis of acute pain and neuropathic pain as DRG MBD1-deficient mice exhibit the reduced responses to acute mechanical, heat, cold, and capsaicin stimuli and the blunted nerve injury-induced pain hypersensitivities. Furthermore, DRG overexpression of MBD1 leads to spontaneous pain and evoked pain hypersensitivities in the WT mice and restores acute pain sensitivities in the MBD1-deficient mice. Mechanistically, MDB1 represses Oprm1 and Kcna2 gene expression by recruiting DNA methyltransferase DNMT3a into these two gene promoters in the DRG neurons. DRG MBD1 is likely a key player under the conditions of acute pain and neuropathic pain.SIGNIFICANCE STATEMENT In the present study, we revealed that the mice with deficiency of methyl-CpG-binding domain protein 1 (MBD1), an epigenetic repressor, in the DRG displayed the reduced responses to acute noxious stimuli and the blunted neuropathic pain. We also showed that DRG overexpression of MBD1 produced the hypersensitivities to noxious stimuli in the WT mice and rescued acute pain sensitivities in the MBD1-deficient mice. We have also provided the evidence that MDB1 represses Oprm1 and Kcna2 gene expression by recruiting DNA methyltransferase DNMT3a into these two gene promoters in the DRG neurons. DRG MBD1 may participate in the genesis of acute pain and neuropathic pain likely through regulating DNMT3a-controlled Oprm1 and Kcna2 gene expression in the DRG neurons.


Asunto(s)
Dolor Agudo/metabolismo , Proteínas de Unión al ADN/biosíntesis , Epigénesis Genética/fisiología , Canal de Potasio Kv.1.2/biosíntesis , Neuralgia/metabolismo , Receptores Opioides mu/biosíntesis , Dolor Agudo/genética , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Ganglios Espinales/química , Ganglios Espinales/metabolismo , Silenciador del Gen/fisiología , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Canal de Potasio Kv.1.2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/genética , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/genética , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo
4.
Haematologica ; 103(7): 1124-1135, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29545351

RESUMEN

Sickle cell disease is associated with acute painful episodes and chronic intractable pain. Endothelin-1, a known pain inducer, is elevated in the blood plasma of both sickle cell patients and mouse models of sickle cell disease. We show here that the levels of endothelin-1 and its endothelin type A receptor are increased in the dorsal root ganglia of a mouse model of sickle cell disease. Pharmacologic inhibition or neuron-specific knockdown of endothelin type A receptors in primary sensory neurons of dorsal root ganglia alleviated basal and post-hypoxia evoked pain hypersensitivities in sickle cell mice. Mechanistically, endothelin type A receptors contribute to sickle cell disease-associated pain likely through the activation of NF-κB-induced Nav1.8 channel upregulation in primary sensory neurons of sickle cell mice. Our findings suggest that endothelin type A receptor is a potential target for the management of sickle cell disease-associated pain, although this expectation needs to be further verified in clinical settings.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Dolor/etiología , Receptor de Endotelina A/genética , Anemia de Células Falciformes/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Endotelina-1/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Hiperalgesia/diagnóstico , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Dolor/diagnóstico , Dolor/metabolismo , Células del Asta Posterior/metabolismo , Receptor de Endotelina A/metabolismo
5.
Nat Commun ; 8: 14712, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28270689

RESUMEN

Nerve injury induces changes in gene transcription in dorsal root ganglion (DRG) neurons, which may contribute to nerve injury-induced neuropathic pain. DNA methylation represses gene expression. Here, we report that peripheral nerve injury increases expression of the DNA methyltransferase DNMT3a in the injured DRG neurons via the activation of the transcription factor octamer transcription factor 1. Blocking this increase prevents nerve injury-induced methylation of the voltage-dependent potassium (Kv) channel subunit Kcna2 promoter region and rescues Kcna2 expression in the injured DRG and attenuates neuropathic pain. Conversely, in the absence of nerve injury, mimicking this increase reduces the Kcna2 promoter activity, diminishes Kcna2 expression, decreases Kv current, increases excitability in DRG neurons and leads to spinal cord central sensitization and neuropathic pain symptoms. These findings suggest that DNMT3a may contribute to neuropathic pain by repressing Kcna2 expression in the DRG.


Asunto(s)
Sensibilización del Sistema Nervioso Central/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Canal de Potasio Kv.1.2/genética , Neuralgia/genética , Neuronas Aferentes/metabolismo , Traumatismos de los Nervios Periféricos/genética , Animales , ADN Metiltransferasa 3A , Modelos Animales de Enfermedad , Ganglios Espinales/citología , Regulación de la Expresión Génica , Canal de Potasio Kv.1.2/metabolismo , Ligadura , Masculino , Factor 1 de Transcripción de Unión a Octámeros/genética , Ratas , Nervios Espinales/lesiones
6.
J Clin Invest ; 124(2): 592-603, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24382350

RESUMEN

The development of opioid-induced analgesic tolerance and hyperalgesia is a clinical challenge for managing chronic pain. Adaptive changes in protein translation in the nervous system are thought to promote opioid tolerance and hyperalgesia; however, how opioids drive such changes remains elusive. Here, we report that mammalian target of rapamycin (mTOR), which governs most protein translation, was activated in rat spinal dorsal horn neurons after repeated intrathecal morphine injections. Activation was triggered through µ opioid receptor and mediated by intracellular PI3K/Akt. Spinal mTOR inhibition blocked both induction and maintenance of morphine tolerance and hyperalgesia, without affecting basal pain perception or locomotor functions. These effects were attributed to the attenuation of morphine-induced increases in translation initiation activity, nascent protein synthesis, and expression of some known key tolerance-associated proteins, including neuronal NOS (nNOS), in dorsal horn. Moreover, elevating spinal mTOR activity by knocking down the mTOR-negative regulator TSC2 reduced morphine analgesia, produced pain hypersensitivity, and increased spinal nNOS expression. Our findings implicate the µ opioid receptor-triggered PI3K/Akt/mTOR pathway in promoting morphine-induced spinal protein translation changes and associated morphine tolerance and hyperalgesia. These data suggest that mTOR inhibitors could be explored for prevention and/or reduction of opioid tolerance in chronic pain management.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Hiperalgesia/metabolismo , Morfina/farmacología , Complejos Multiproteicos/metabolismo , Receptores Opioides mu/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Relación Dosis-Respuesta a Droga , Inyecciones Espinales , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Morfina/metabolismo , Neuronas/efectos de los fármacos , Dolor/tratamiento farmacológico , Manejo del Dolor , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Sirolimus/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Bazo/citología , Factores de Tiempo
7.
Nat Neurosci ; 16(8): 1024-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23792947

RESUMEN

Neuropathic pain is a refractory disease characterized by maladaptive changes in gene transcription and translation in the sensory pathway. Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the development of neuropathic pain is unclear. Here we identify a conserved lncRNA, named Kcna2 antisense RNA, for a voltage-dependent potassium channel mRNA, Kcna2, in first-order sensory neurons of rat dorsal root ganglion (DRG). Peripheral nerve injury increased Kcna2 antisense RNA expression in injured DRG through activation of myeloid zinc finger protein 1, a transcription factor that binds to the Kcna2 antisense RNA gene promoter. Mimicking this increase downregulated Kcna2, reduced total voltage-gated potassium current, increased excitability in DRG neurons and produced neuropathic pain symptoms. Blocking this increase reversed nerve injury-induced downregulation of DRG Kcna2 and attenuated development and maintenance of neuropathic pain. These findings suggest endogenous Kcna2 antisense RNA as a therapeutic target for the treatment of neuropathic pain.


Asunto(s)
Regulación de la Expresión Génica/genética , Silenciador del Gen , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuralgia/genética , Neuronas Aferentes/fisiología , ARN Largo no Codificante/fisiología , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Vectores Genéticos , Células HEK293 , Humanos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/fisiología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuralgia/fisiopatología , Neuralgia/prevención & control , Traumatismos de los Nervios Periféricos , Regiones Promotoras Genéticas , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Nervios Espinales/lesiones , Transactivadores/biosíntesis , Transactivadores/fisiología
8.
J Pain ; 14(2): 182-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23374940

RESUMEN

UNLABELLED: Persistent inflammation promotes internalization of synaptic GluR2-containing, Ca(2+)-impermeable AMPA receptors (AMPARs) and insertion of GluR1-containing, Ca(2+)-permeable AMPARs at extrasynaptic sites in dorsal horn neurons. Previously we have shown that internalization of synaptic GluR2-containing AMPARs requires activation of spinal cord protein kinase C alpha (PKCα), but molecular mechanisms that underlie altered trafficking of extrasynaptic AMPARs are unclear. Here, using antisense (AS) oligodeoxynucleotides (ODN) that specifically knock down PKCα, we found that a decrease in dorsal horn PKCα expression prevents complete Freund's adjuvant (CFA)-induced increase in functional expression of extrasynaptic Ca(2+)-permeable AMPARs in substantia gelatinosa (SG) neurons of the rat spinal cord. Augmented AMPA-induced currents and associated [Ca(2+)](i) transients were abolished, and the current rectification 1 day post-CFA was reversed. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those that exhibited strong adaptation. Finally, dorsal horn PKCα knockdown produced an antinociceptive effect on CFA-induced thermal and mechanical hypersensitivity during the maintenance period of inflammatory pain, indicating a role for PKCα in persistent inflammatory pain maintenance. Our results indicate that inflammation-induced trafficking of extrasynaptic Ca(2+)-permeable AMPARs in tonically firing SG neurons depends on PKCα, and that this PKCα-dependent trafficking may contribute to persistent inflammatory pain maintenance. PERSPECTIVE: This study shows that PKCα knockdown blocks inflammation-induced upregulation of extrasynaptic Ca(2+)-permeable AMPARs in dorsal horn neurons and produces an antinociceptive effect during the maintenance period of inflammatory pain. These findings have potential implications for use of PKCα gene-silencing therapy to prevent and/or treat persistent inflammatory pain.


Asunto(s)
Inflamación/enzimología , Inflamación/metabolismo , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Proteína Quinasa C-alfa/fisiología , Receptores AMPA/fisiología , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Calcio/metabolismo , Adyuvante de Freund , Procesamiento de Imagen Asistido por Computador , Inflamación/complicaciones , Inyecciones Espinales , Masculino , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/farmacología , Dolor/inducido químicamente , Dolor/etiología , Técnicas de Placa-Clamp , Proteína Quinasa C-alfa/genética , Ratas , Regulación hacia Arriba/fisiología
9.
Neuroreport ; 23(6): 378-84, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22362187

RESUMEN

Cumulating evidence has demonstrated that µ opioid receptor (MOR) agonists promote spinal glial activation, lead to synthesis and release of proinflammatory cytokines and chemokines, and contribute to opioid-induced hyperalgesia and development of opioid tolerance and dependence. However, whether these MOR agonists directly or indirectly act on spinal cord astrocytes and microglial cells in vivo is unclear. In the present study, by combining the techniques of in-situ hybridization of MOR mRNA with immunohistochemistry of glial fibrillary acidic protein (GFAP; an astrocyte marker) and Iba1 (a microglial marker), we examined expression and distribution of GFAP, Iba1, and MOR mRNA in the spinal cord of rats under chronic morphine tolerance conditions. Intrathecal injections of morphine twice daily for 7 days reduced morphine analgesic effect and increased both GFAP and Iba1 immunostaining densities in the spinal cord. Surprisingly, neither GFAP nor Iba1 colocalized with MOR mRNA in spinal cord cells. Our findings indicate that MOR expression is absent from spinal cord astrocytes and microglia, suggesting that these cell types are indirectly activated by MOR agonists under chronic opioid tolerance conditions.


Asunto(s)
Astrocitos/metabolismo , Microglía/metabolismo , ARN Mensajero/metabolismo , Receptores Opioides mu/metabolismo , Médula Espinal/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Tolerancia a Medicamentos , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Morfina/administración & dosificación , Ratas , Ratas Sprague-Dawley
10.
Pain ; 151(1): 226-234, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20696523

RESUMEN

Protein interacting with C kinase 1 (PICK1) is a PDZ-containing protein that binds to AMPA receptor (AMPAR) GluR2 subunit and protein kinase Cα (PKCα) in the central neurons. It functions as a targeting and transport protein, presents the activated form of PKCα to synaptic GluR2, and participates in synaptic AMPAR trafficking in the nervous system. Thus, PICK1 might be involved in many physiological and pathological processes triggered via the activation of AMPARs. We report herein that PICK1 knockout mice display impaired mechanical and thermal pain hypersensitivities during complete Freund's adjuvant (CFA)-induced inflammatory pain maintenance. Acute transient knockdown of spinal cord PICK1 through intrathecal injection of PICK1 antisense oligodeoxynucleotide had a similar effect. In contrast, knockout and knockdown of spinal cord PICK1 did not affect incision-induced guarding pain behaviors or mechanical or thermal pain hypersensitivities. We also found that PICK1 is highly expressed in dorsal horn, where it interacts with GluR2 and PKCα. Injection of CFA into a hind paw, but not a hind paw incision, increased PKCα-mediated GluR2 phosphorylation at Ser880 and GluR2 internalization in dorsal horn. These increases were absent when spinal cord PICK1 was deficient. Given that dorsal horn PKCα-mediated GluR2 phosphorylation at Ser880 and GluR2 internalization contribute to the maintenance of CFA-induced inflammatory pain, our findings suggest that spinal PICK1 may participate in the maintenance of persistent inflammatory pain, but not in incision-induced post-operative pain, through promoting PKCα-mediated GluR2 phosphorylation and internalization in dorsal horn neurons.


Asunto(s)
Adyuvante de Freund/efectos adversos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Inflamación/complicaciones , Médula Espinal/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/farmacología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/genética , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Proteínas Nucleares/farmacología , Oligodesoxirribonucleótidos/uso terapéutico , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Dolor Postoperatorio/patología , Fosforilación/genética , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Serina/metabolismo , Médula Espinal/efectos de los fármacos , Factores de Tiempo
11.
Neurotox Res ; 15(3): 252-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19384598

RESUMEN

Pretreatment with methamphetamine (METH) can attenuate toxicity due to acute METH challenges. The majority of previous reports have focused mainly on the effects of the drug on the striatal dopaminergic system. In the present study, we used a regimen that involves gradual increases in METH administration to rats in order to mimic progressively larger doses of the drug used by some human METH addicts. We found that this METH preconditioning was associated with complete protection against dopamine depletion caused by a METH challenge (5 mg/kg x 6 injections given 1 h apart) in the striatum and cortex. In contrast, there was no preconditioning-mediated protection against METH-induced serotonin depletion in the striatum and hippocampus, with some protection being observed in the cortex. There was also no protection against METH-induced norepinephrine (NE) depletion in the hippocampus. These results indicate that, in contrast to the present dogmas, there might be differences in the mechanisms involved in METH toxicity on monoaminergic systems in the rodent brain. Thus, chronic injections of METH might activate programs that protect against dopamine toxicity without influencing drug-induced pathological changes in serotoninergic systems. Further studies will need to evaluate the cellular and molecular bases for these differential responses.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Metanfetamina/farmacología , Análisis de Varianza , Animales , Monoaminas Biogénicas/análisis , Encéfalo/anatomía & histología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cromatografía Líquida de Alta Presión/métodos , Esquema de Medicación , Masculino , Metanfetamina/administración & dosificación , Ratas , Ratas Sprague-Dawley
12.
Eur J Pharmacol ; 589(1-3): 94-7, 2008 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-18544452

RESUMEN

Amphetamine is a neurotoxic psychostimulant that causes dopamine depletion and neuronal death in the rodent striatum. In the present study, we sought to determine if toxic doses of the drug can also induce pathological changes in the mouse olfactory bulb. We found that injections of amphetamine (10 mg/kg x 4, given 2 h apart) caused significant decreases in dopamine levels in that structure. This dose of the drug also induced substantial increases in the number of terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate (dNTP) nick end labeling (TUNEL)-positive cells in the olfactory bulb indicative of elevated DNA fragmentation. These results show that the toxic effects of amphetamine involve the olfactory bulb in addition to the striatum. These observations need to be taken into consideration when discussing the clinical course of amphetamine addiction.


Asunto(s)
Anfetamina/toxicidad , Estimulantes del Sistema Nervioso Central/toxicidad , Fragmentación del ADN , Dopamina/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Anfetamina/administración & dosificación , Animales , Muerte Celular/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/administración & dosificación , Regulación hacia Abajo , Esquema de Medicación , Etiquetado Corte-Fin in Situ , Inyecciones , Masculino , Ratones , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA