Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Microorganisms ; 11(10)2023 Sep 28.
Article En | MEDLINE | ID: mdl-37894088

Anaplasma (A.) ovis is the most important cause of anaplasmosis in small ruminants. The current study was planned to estimate the molecular prevalence, risk factors, and phylogenetic analysis of A. ovis infection in sheep and goats from different agro-climatic regions of Central and Southern Punjab, Pakistan. A total of 400 jugular blood samples were collected from asymptomatic goats (n = 200) and sheep (n = 200) from the Jhang and Dera Ghazi Khan districts from January 2021 to February, 2023. Two hundred blood samples were collected from each district. Ten union councils (UC) were randomly chosen from each district, and 20 samples were collected from each UC based on the multistage cluster sampling technique. The samples were analyzed with PCR targeting the major surface protein (msp4) gene of A. ovis. The overall molecular prevalence of anaplasmosis was 57.5%. The disease occurrence was higher in Dera Ghazi Khan (61.5%) than in the Jhang district (53.5%). Infection positivity was greater in goats (65.5%) than in sheep (49.5%). Multivariate logistic regression analysis indicated that host species [sheep; Odds Ratio (OR) = 3.212; p = 0.000, Confidence Interval (CI) = 1.968-5.242], age (adult; OR = 2.606; p = 0.003, CI = 1.398-4.858), and acaricide use (never; OR = 13.671; p = 0.000, CI = 6.414-26.283) were significantly higher risk for A. ovis in small ruminants (p< 0.05; OR > 1). The sequencing and phylogenetic analysis of four representative isolates in the current study (Genbank numbers; Goats: OQ302202, OQ302203; Sheep: OQ319592, OQ319593) revealed novel strains of A. ovis with 97-100% similarity from different countries. The msp4-based goat isolates showed greater genetic diversity, while sheep genotypes showed homology with isolates from Italy, Spain, Hungary, Cyprus, Spain, Iran, and China. The current surveillance study will help in devising prevention and control strategies regarding anaplasmosis in small ruminants. However, there is a need for further study on the clinicopathological and vector competence aspects of these genotypes.

2.
PLoS One ; 18(8): e0290620, 2023.
Article En | MEDLINE | ID: mdl-37643200

Caprine theileriosis, caused by Theileria ovis is a serious production issue, especially in the areas that depend on goats and sheep for milk, meat, and other economic benefits. Pakistan has a large goat population, but few reports have been documented from this country regarding PCR-based detection of T. ovis. The molecular prevalence of T. ovis, on a seasonal basis, in various goat breeds enrolled from Muzaffar Garh district of Punjab in Pakistan was determined from October 2018 to September 2019. In this study, 1084 goat blood samples were screened for the detection of T. ovis DNA through PCR-based amplification of 18S rRNA gene. Out of 1084 goats, 12 (1.11%) were infected with T. ovis. The parasite prevalence varied with the sampling seasons (Chi square test, P = 0.008), and the parasite prevalence was highest in goat blood samples collected in summer (2.39%) followed by winter (1.88%). DNA sequencing and BLAST analysis confirmed the presence of T. ovis, and the amplified isolates from the 18S rRNA gene of T. ovis were found to be highly conserved during phylogenetic analysis. Young goats (Fischer exact test, P = 0.022) were found more infected with T. ovis during the winter season. Infected goats had elevated white blood cell counts (Two-sample t-test, P = 0.04), blood urea nitrogen to Creatinine ratio (Two-sample t-test, P = 0.02) and decreased serum Creatinine (Two-sample t-test, P = 0.001) as compared to T. ovis negative goats. We report a relatively low molecular prevalence of T. ovis in goats from the Muzaffar Garh district. However, it is recommended that control measures to eradicate T. ovis infection in goats in this area should be taken.


Theileria , Theileriasis , Animals , Sheep , Cattle , Theileria/genetics , Goats , Pakistan/epidemiology , Phylogeny , Theileriasis/epidemiology , RNA, Ribosomal, 18S/genetics
3.
Antibiotics (Basel) ; 12(5)2023 May 20.
Article En | MEDLINE | ID: mdl-37237837

The increasing incidence of extended-spectrum ß-lactamase (ESBL)-producing Escherichia (E.) coli in backyard chicken farming in Pakistan is of serious concern. This study aimed to assess the prevalence, antimicrobial resistance patterns and risk factors associated with ESBL avian pathogenic E. coli (APEC) isolated from backyard chickens in the Jhang district, Punjab, Pakistan. In total, 320 cloacal swabs were collected from four breeds of backyard chicken (Aseel, Golden, Misri and Necked Neck). ESBL E. coli were phenotypically identified using double disc synergy test (DDST) and corresponding genes were confirmed by multiplex polymerase chain reaction (mPCR). Out of the 320 samples, 164 (51.3%) were confirmed as E. coli, while 74 (45.1%) were characterized as ESBL E. coli. The frequency of isolation of ESBL E. coli was highest in Aseel chickens (35.1%). Of the 164 confirmed E. coli, 95.1%, 78.6%, 76.8%, 71.3%, 70.1%, 68.9%, 60.4% and 57.3% were resistant against tylosin, doxycycline, cefotaxime, enrofloxacin, colistin, trimethoprim/sulfamethoxazole, chloramphenicol and gentamicin, respectively. The ESBL gene types detected and their corresponding proportions were blaCTX-M (54.1 %, 40/74), blaTEM, (12.2%, 9/74) and co-existence (blaCTX-M and blaTEM) were shown in 33.8% (25/74). The blaCTX-M gene sequence showed homology to blaCTX-M-15 from clinical isolates. The mean multiple antibiotic resistance index (MARI) was found to be higher among ESBL E. coli (0.25) when compared to non-ESBL E. coli (0.17). Both free-range husbandry management system (p = 0.02, OR: 30.00, 95% CI = 1.47-611.79) and high antimicrobial usage in the last 6 months (p = 0.01, OR: 25.17, 95% CI = 1.81-348.71) were found significantly associated with isolation of ESBL-producing E. coli in the tested samples using binary logistic regression analysis. This study confirmed the potential of backyard chickens as a reservoir for ESBL E. coli in the Jhang district, Punjab, Pakistan.

4.
Front Microbiol ; 13: 846884, 2022.
Article En | MEDLINE | ID: mdl-35602013

Ticks (Acari; Ixodidae) are the second most important vector for transmission of pathogens to humans, livestock, and wildlife. Ticks as vectors for viruses have been reported many times over the last 100 years. Tick-borne viruses (TBVs) belong to two orders (Bunyavirales and Mononegavirales) containing nine families (Bunyaviridae, Rhabdoviridae, Asfarviridae, Orthomyxovirida, Reoviridae, Flaviviridae, Phenuviridae, Nyamiviridae, and Nairoviridae). Among these TBVs, some are very pathogenic, causing huge mortality, and hence, deserve to be covered under the umbrella of one health. About 38 viral species are being transmitted by <10% of the tick species of the families Ixodidae and Argasidae. All TBVs are RNA viruses except for the African swine fever virus from the family Asfarviridae. Tick-borne viral diseases have also been classified as an emerging threat to public health and animals, especially in resource-poor communities of the developing world. Tick-host interaction plays an important role in the successful transmission of pathogens. The ticks' salivary glands are the main cellular machinery involved in the uptake, settlement, and multiplication of viruses, which are required for successful transmission into the final host. Furthermore, tick saliva also participates as an augmenting tool during the physiological process of transmission. Tick saliva is an important key element in the successful transmission of pathogens and contains different antimicrobial proteins, e.g., defensin, serine, proteases, and cement protein, which are key players in tick-virus interaction. While tick-virus interaction is a crucial factor in the propagation of tick-borne viral diseases, other factors (physiological, immunological, and gut flora) are also involved. Some immunological factors, e.g., toll-like receptors, scavenger receptors, Janus-kinase (JAK-STAT) pathway, and immunodeficiency (IMD) pathway are involved in tick-virus interaction by helping in virus assembly and acting to increase transmission. Ticks also harbor some endogenous viruses as internal microbial faunas, which also play a significant role in tick-virus interaction. Studies focusing on tick saliva and its role in pathogen transmission, tick feeding, and control of ticks using functional genomics all point toward solutions to this emerging threat. Information regarding tick-virus interaction is somewhat lacking; however, this information is necessary for a complete understanding of transmission TBVs and their persistence in nature. This review encompasses insight into the ecology and vectorial capacity of tick vectors, as well as our current understanding of the predisposing, enabling, precipitating, and reinforcing factors that influence TBV epidemics. The review explores the cellular, biochemical, and immunological tools which ensure and augment successful evading of the ticks' defense systems and transmission of the viruses to the final hosts at the virus-vector interface. The role of functional genomics, proteomics, and metabolomics in profiling tick-virus interaction is also discussed. This review is an initial attempt to comprehensively elaborate on the epidemiological determinants of TBVs with a focus on intra-vector physiological processes involved in the successful execution of the docking, uptake, settlement, replication, and transmission processes of arboviruses. This adds valuable data to the existing bank of knowledge for global stakeholders, policymakers, and the scientific community working to devise appropriate strategies to control ticks and TBVs.

5.
Trop Anim Health Prod ; 54(2): 155, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35362760

Theileriosis and anaplasmosis are important tick-borne hemoparasites of bovines. The first surveillance study aimed to assess the suitability of duplex PCR for simultaneous detection of Theileria annulata and Anaplasma marginale field infections in Jhang and Rawalpindi districts of Punjab, Pakistan. Cattle blood samples (n = 480) were collected from selected union councils of all tehsils using a multistage sampling technique. The sampling unit consisted of asymptomatic cattle belonging to either age, sex, and breed. Epidemiological data related to host, area, management, and season were collected using a questionnaire. Based on duplex PCR, the overall prevalence of the two concurrent tick-borne pathogens was 19.79% (95/480). Chi-square analysis indicated that age, breed, tick infestation, history of tick-borne diseases, frequency of acaricidial application, and season were significantly associated with tick-borne pathogens. Phylogenetic analysis of A. marginale and T. annulata isolates based on msp1ß and cytochrome b genes, respectively, revealed that nucleotide sequences acquired from these two pathogens are novel, grouped separately from different countries. All our A. marginale isolates showed 88.2 to 80.5% similarity with isolates from Egypt, Israel, Mexico, and lesser homology with South African isolates. Similarly, the phylogenetic tree based on cytochrome b partial sequences of T. annulata revealed that our sequences are closer to those from India and Iran. Based on this first study on concomitant detection of tick-borne pathogens, it can be concluded that mixed infections are endemic in the study districts and mPCR is suitable for detecting concurrent field infections. Simultaneous infections should be considered while performing surveillance and chemotherapeutic trials for better prevention and control of tick-borne diseases.


Anaplasma marginale , Cattle Diseases , Theileria annulata , Anaplasma marginale/genetics , Animals , Cattle , Cattle Diseases/parasitology , Pakistan/epidemiology , Phylogeny , Theileria annulata/genetics
6.
Vet Sci ; 8(12)2021 Dec 08.
Article En | MEDLINE | ID: mdl-34941839

This review highlights the diagnostic methods used, the control strategies adopted, and the global epidemiological status of canine cyclic thrombocytopenia and granulocytic anaplasmosis at the animal-human interface. Canine anaplasmosis is an important worldwide disease, mainly caused by Anaplasma platys and A. phagocytophilum with zoonotic implications. A. platys chiefly infects platelets in canids, while A. phagocytophilum is the most common zoonotic pathogen infecting neutrophils of various vertebrate hosts. Diagnosis is based on the identification of clinical signs, the recognition of intracellular inclusions observed by microscopic observation of stained blood smear, and/or methods detecting antibodies or nucleic acids, although DNA sequencing is usually required to confirm the pathogenic strain. Serological cross-reactivity is the main problem in serodiagnosis. Prevalence varies from area to area depending on tick exposure. Tetracyclines are significant drugs for human and animal anaplasmosis. No universal vaccine is yet available that protects against diverse geographic strains. The control of canine anaplasmosis therefore relies on the detection of vectors/reservoirs, control of tick vectors, and prevention of iatrogenic/mechanical transmission. The control strategies for human anaplasmosis include reducing high-risk tick contact activities (such as gardening and hiking), careful blood transfusion, by passing immunosuppression, recognizing, and control of reservoirs/vectors.

7.
Parasitology ; 143(6): 659-85, 2016 05.
Article En | MEDLINE | ID: mdl-26932580

The Anaplasma species are important globally distributed tick-transmitted bacteria of veterinary and public health importance. These pathogens, cause anaplasmosis in domestic and wild animal species including humans. Rhipicephalus, Ixodes, Dermacentor and Amblyomma genera of ticks are the important vectors of Anaplasma. Acute anaplasmosis is usually diagnosed upon blood smear examination followed by antibodies and nucleic acid detection. All age groups are susceptible but prevalence increases with age. Serological cross-reactivity is one of the important issues among Anaplasma species. They co-exist and concurrent infections occur in animals and ticks in same geographic area. These are closely related bacteria and share various common attributes which should be considered while developing vaccines and diagnostic assays. Movement of susceptible animals from non-endemic to endemic regions is the major risk factor of bovine/ovine anaplasmosis and tick-borne fever. Tetracyclines are currently available drugs for clearance of infection and treatment in humans and animals. Worldwide vaccine is not yet available. Identification, elimination of reservoirs, vector control (chemical and biological), endemic stability, habitat modification, rearing of tick resistant breeds, chemotherapy and tick vaccination are major control measures of animal anaplasmosis. Identification of reservoirs and minimizing the high-risk tick exposure activities are important control strategies for human granulocytic anaplasmosis.


Anaplasma/physiology , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Anaplasmosis/drug therapy , Anaplasmosis/prevention & control , Animals , Arachnid Vectors/parasitology , Disease Reservoirs , Humans , Public Health
8.
Parasitol Res ; 114(11): 3941-57, 2015 Nov.
Article En | MEDLINE | ID: mdl-26346451

Anaplasma marginale and Anaplasma phagocytophilum are the most important tick-borne bacteria of veterinary and public health significance in the family Anaplasmataceae. The objective of current review is to provide knowledge on ecology and epidemiology of A. phagocytophilum and compare major similarities and differences of A. marginale and A. phagocytophilum. Bovine anaplasmosis is globally distributed tick-borne disease of livestock with great economic importance in cattle industry. A. phagocytophilum, a cosmopolitan zoonotic tick transmitted pathogen of wide mammalian hosts. The infection in domestic animals is generally referred as tick-borne fever. Concurrent infections exist in ticks, domestic and wild animals in same geographic area. All age groups are susceptible, but the prevalence increases with age. Movement of susceptible domestic animals from tick free non-endemic regions to disease endemic regions is the major risk factor of bovine anaplasmosis and tick-borne fever. Recreational activities or any other high-risk tick exposure habits as well as blood transfusion are important risk factors of human granulocytic anaplasmosis. After infection, individuals remain life-long carriers. Clinical anaplasmosis is usually diagnosed upon examination of stained blood smears. Generally, detection of serum antibodies followed by molecular diagnosis is usually recommended. There are problems of sensitivity and cross-reactivity with both the Anaplasma species during serological tests. Tetracyclines are the drugs of choice for treatment and elimination of anaplasmosis in animals and humans. Universal vaccine is not available for either A. marginale or A. phagocytophilum, effective against geographically diverse strains. Major control measures for bovine anaplasmosis and tick-borne fever include rearing of tick-resistant breeds, endemic stability, breeding Anaplasma-free herds, identification of regional vectors, domestic/wild reservoirs and control, habitat modification, biological control, chemotherapy, and vaccinations (anaplasmosis and/or tick vaccination). Minimizing the tick exposure activities, identification and control of reservoirs are important control measures for human granulocytic anaplasmosis.


Anaplasma marginale/isolation & purification , Anaplasma phagocytophilum/isolation & purification , Anaplasmosis/epidemiology , Cattle Diseases/epidemiology , Ehrlichiosis/epidemiology , Ticks/microbiology , Anaplasmosis/microbiology , Animals , Animals, Domestic , Animals, Wild , Cattle , Cattle Diseases/microbiology , Disease Reservoirs , Disease Vectors , Ecology , Ehrlichiosis/microbiology , Humans , Mammals , Public Health , Veterinary Medicine
...