Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Microbiol Resour Announc ; 12(9): e0094522, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37466328

Lactiplantibacillus plantarum adapts to a wide range of ecological niches, including the human gut. Numerous health-promoting benefits have been associated with L. plantarum strains. Motivated for the development of human-origin target-based probiotics with known genetic markers, we report the draft genome sequence of human gut-associated Lactiplantibacillus plantarum subsp. plantarum HF43.

2.
Front Nutr ; 9: 959941, 2022.
Article En | MEDLINE | ID: mdl-36185680

This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.

3.
Pharm Biol ; 54(11): 2547-2554, 2016 Nov.
Article En | MEDLINE | ID: mdl-27159021

CONTEXT: Endophytic fungi, being a prolific source of bioactive secondary metabolites, are of great interest for natural product discovery. OBJECTIVE: Isolation and partial characterization of endophytic fungi inhabiting the leaves and woody parts of Taxus fuana Nan Li & R.R. Mill. (Taxaceae) and evaluation of biological activity. MATERIALS AND METHODS: Endophytic fungal isolates were identified by molecular analysis of internal transcribed spacer (ITS) regions of 18S rDNA. Extracts of the endophytic fungi cultured on potato dextrose agar and modified medium were evaluated using cancer chemoprevention bioassays [inhibition of TNF-α-induced NFκB, aromatase and inducible nitric oxide synthase (iNOS); induction of quinone reductase 1 (QR1)] and growth inhibition with MCF-7 cells. RESULTS: Nine of 15 fungal isolates were identified as belonging to Epicoccum, Mucor, Penicillium, Chaetomium, Paraconiothriym, Plectania or Trichoderma. Five of the 15 extracts inhibited NFκB activity (IC50 values ranging between 0.18 and 17 µg/mL) and five inhibited iNOS (IC50 values ranging between 0.32 and 12.9 µg/mL). In the aromatase assay, only two isolates mediated inhibition (IC50 values 12.2 and 10.5 µg/mL). With QR1 induction, three extracts exhibited significant activity (concentrations to double activity values ranging between 0.20 and 5.5 µg/mL), and five extracts inhibited the growth of MCF-7 cells (IC50 values ranging from 0.56 to 17.5 µg/mL). Six active cultures were derived from woody parts of the plant material. CONCLUSION: The endophytic fungi studied are capable of producing pharmacologically active natural compounds. In particular, isolates derived from the wood of Taxus fuana should be prioritized for the isolation and characterization of bioactive constituents.


Anticarcinogenic Agents/isolation & purification , Endophytes/isolation & purification , Taxus/microbiology , Anticarcinogenic Agents/pharmacology , Aromatase Inhibitors/pharmacology , Endophytes/metabolism , Humans , MCF-7 Cells , NAD(P)H Dehydrogenase (Quinone)/biosynthesis , NF-kappa B/antagonists & inhibitors , Nitric Oxide Synthase Type II/antagonists & inhibitors
4.
J Basic Microbiol ; 54(1): 18-27, 2014 Jan.
Article En | MEDLINE | ID: mdl-23686796

The recalcitrant nature of polyvinyl chloride creates serious environmental concerns during manufacturing and waste disposal. The present study was aimed to isolate and screen different soil fungi having potential to biodegrade PVC films. After 10 months of soil burial experiment, it was observed that a number of fungal strains were flourishing on PVC films. On morphological as well as on 18rRNA gene sequence and phylogenetic basis they were identified as Phanerochaete chrysosporium PV1, Lentinus tigrinus PV2, Aspergillus niger PV3, and Aspergillus sydowii PV4. The biodegradation ability of these fungal isolates was further checked in shake flask experiments by taking thin films of PVC (C source) in mineral salt medium. A significant change in color and surface deterioration of PVC films was confirmed through visual observation and Scanning electron microscopy. During shake flask experiments, P. chrysosporium PV1 produced maximum biomass of about 2.57 mg ml(-1) followed by A. niger PV3. P. chrysosporium PV1 showed significant reduction (178,292 Da(-1)) in Molecular weight of the PVC film than control (200,000 Da(-1)) by gel permeation chromatography. Furthermore more Fourier transform infrared spectroscopy and nuclear magnetic resonance also revealed structural changes in the PVC. It was concluded that isolated fungal strains have significant potential for biodegradation of PVC plastics.


Biodegradation, Environmental , Fungi/metabolism , Polyvinyl Chloride , Fungi/isolation & purification , Soil Microbiology
5.
Pol J Microbiol ; 62(1): 101-8, 2013.
Article En | MEDLINE | ID: mdl-23829086

Polystyrene is considered stable to biological degradation. Lantinus tigrinus isolated from wood sample produced esterase in growth medium under normal conditions. However, acidic medium, 37 degrees C temperature, presence of tween 80; and urea and yeast extract in mineral salt medium enhance the production of esterase and specific activity. Purified esterase was active at broad pH range and 45 degrees C. FTIR analysis confirmed that esterase produced by Lantinus tigrinus effectively degraded polystyrene film and broke macromolecules down to non-toxic molecules. This study concludes that the presence of Lantinus tigrinus at dumping sites can be exploited for waste management containing high molecular weight synthetic polymers.


Basidiomycota/enzymology , Esterases/metabolism , Polystyrenes/metabolism , Time Factors
6.
Environ Sci Pollut Res Int ; 19(5): 1728-37, 2012 Jun.
Article En | MEDLINE | ID: mdl-22161118

PURPOSE: Biodegradation and biodecolorization of Drimarene blue K(2)RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system. METHOD: Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH 5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500 mg l(-1)) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24-72 h. Total run time for reactor operation was 17 days. RESULTS: The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg l(-1) initial dye concentration and HRT of 24 h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC-MS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K(2)RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye. CONCLUSION: The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.


Anthraquinones/metabolism , Aspergillus flavus/metabolism , Bioreactors/microbiology , Coloring Agents/metabolism , Vinyl Compounds/metabolism , Waste Disposal, Fluid/methods , Anthraquinones/toxicity , Aspergillus flavus/genetics , Benzoic Acid/metabolism , Biological Oxygen Demand Analysis , Catechols/metabolism , Cells, Immobilized , Chromatography, High Pressure Liquid , Equipment Design , Lolium/drug effects , Molecular Sequence Data , Phthalic Acids/metabolism , Phylogeny , Pyrimidines/metabolism , Textile Industry , Toxicity Tests , Vinyl Compounds/toxicity , Waste Disposal, Fluid/instrumentation
7.
Environ Monit Assess ; 176(1-4): 597-604, 2011 May.
Article En | MEDLINE | ID: mdl-20680441

This paper describes the development of a simple and sensitive method with reduced run time for the estimation of biodegradation product of an anthraquinone dye, Drimarene blue K(2)RL. The chromatographic analysis was performed using a reversed-phase high performance liquid chromatography (HPLC) with a Lichrospher® RP-18 column, 5 µm particle size, 25 cm × 4.6 mm internal diameter using a 70:20:10 (v/v) mixture of acetonitrile-ammonium acetate buffer (0.02 M) with 0.8% Trifluoroacetic acid (pH 2.5) and methanol as eluent. Flow rate was adjusted to 1.2 mL min(-1). The metabolites (phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, and 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione) were identified by running HPLC grade standards in defined concentrations. The retention time of the compounds were 2.0, 2.5, 5.2, and 7.2 min for phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, and 2,3-dihydro- 9,10-dihydroxy-1,4-anthracenedione, respectively. The reliability, sensitivity, and validation of the method were checked by calculating recoveries of the individual compounds in the acetonitrile and dye degradation media. The lower limits of detection for anthraquinone metabolites and the separation of acid and anthraquinone metabolites in short time were achieved.


Anthraquinones/analysis , Biodegradation, Environmental , Chromatography, High Pressure Liquid/methods , Coloring Agents/analysis , Benzoic Acid/analysis , Phthalic Acids/analysis , Reproducibility of Results
...