Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 796111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284410

RESUMEN

A number of preclinical and clinical studies have demonstrated the efficiency of mesenchymal stromal cells to serve as an excellent base for a cell-mediated drug delivery system. Cell-based targeted drug delivery has received much attention as a system to facilitate the uptake a nd transfer of active substances to specific organs and tissues with high efficiency. Human mesenchymal stem cells (MSCs) are attracting increased interest as a promising tool for cell-based therapy due to their high proliferative capacity, multi-potency, and anti-inflammatory and immunomodulatory properties. In particular, these cells are potentially suitable for use as encapsulated drug transporters to sites of inflammation. Here, we studied the in vitro effects of incorporating synthetic polymer microcapsules at various microcapsule-to-cell ratios on the morphology, ultrastructure, cytokine profile, and migration ability of human adipose-derived MSCs at various time points post-phagocytosis. The data show that under appropriate conditions, human MSCs can be efficiently loaded with synthesized microcapsules without damaging the cell's structural integrity with unexpressed cytokine secretion, retained motility, and ability to migrate through 8 µm pores. Thus, the strategy of using human MSCs as a delivery vehicle for transferring microcapsules, containing bioactive material, across the tissue-blood or tumor-blood barriers to facilitate the treatment of stroke, cancer, or inflammatory diseases may open a new therapeutic perspective.

2.
Bull Exp Biol Med ; 147(4): 415-20, 2009 Apr.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-19704937

RESUMEN

This work was designed to study the role of surfactant protein D in the regulation of NO synthesis by "non-alveolar" microphages. We evaluated whether the effects of surfactant protein D depend on the phenotype of macrophages. In the absence of surfactant protein D, the LPS-induced iNOS response was shown to decrease in macrophages of native and proinflammatory phenotypes by 30%, and in macrophages of the antiinflammatory phenotype (by 63%). Under the influence of lipopolysaccharide in high doses (500 ng/ml), NO(2)*- production by mouse macrophages without surfactant protein D was reduced in native cells (by 25%), but increased in proinflammatory (by 40%) and antiinflammatory phenotypes (by 12% compared to mouse macrophages with surfactant protein D). Our results suggest that surfactant protein D is involved in the immune response in the whole organism, but not only in the lungs. The effect of surfactant protein D depends on the phenotype of macrophages.


Asunto(s)
Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Óxido Nítrico/metabolismo , Cavidad Peritoneal/fisiopatología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Cavidad Peritoneal/citología , Proteína D Asociada a Surfactante Pulmonar/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA