Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Foods ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731773

RESUMEN

Cold-pressed moringa, milk thistle, and jujube seed oils were investigated in terms of their characteristic profiles, thermal properties, and oxidative stability. The findings proved that the extracted oils were characterized by high nutritional values, which encourages their use in various fields. Results showed significant differences between the obtained oils. Overall, jujube seed oil exhibited the best quality parameters, with acidity equal to 0.762 versus 1% for the moringa and milk thistle seed oils. Milk thistle seed oil showed absorbance in the UV-C (100-290 nm), UV-B (290-320 nm), and UV-A (320-400 nm) ranges, while the moringa and jujube seed oils showed absorbance only in the UV-B and UV-A ranges. Concerning bioactive compounds, jujube seed oil presented the highest content of polyphenols, which promoted a good scavenging capacity (90% at 10 µg/mL) compared to the moringa and milk thistle seed oils. Assessing the thermal properties of the obtained oils showed the presence of four groups of triglycerides in the moringa and milk thistle seed oils, and two groups of triglycerides in the jujube seed oil. The thermograms were constant at temperatures above 10 °C for milk thistle seed oil, 15 °C for jujube seed oil, and 30 °C for moringa seed oil, which corresponded to complete liquefaction of the oils. The extinction coefficients K232 and K270, monitored during storage for 60 days at 60 °C, proved that jujube seed oil had the highest polyphenols content and was the most stable against thermal oxidation.

2.
Asian Journal of Andrology ; (6): 393-398, 2009.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-284697

RESUMEN

In vitro supplementation with date seed oil (DSO) can protect spermatozoa against hydrogen peroxide (H2O2)-mediated damage and can improve sperm function, possibly owing to antioxidant properties. We tested the antioxidant effects of DSO on human sperm motility, sperm viability, reacted acrosome and lipid peroxidation assessed in vitro after H2O2-mediated oxidative damage in spermatozoa. Sixteen patients (mean age: 35 years; range: 25-45 years) referred to the Histology-Embryology Laboratory of the Medicine Faculty of Sfax for semen analysis after 12-24 months of sexual intercourse without conception were selected. After spermiogram, sperm selection by two-interface discontinuous Sill Select gradient was performed, and selected spermatozoa were used in four experimental assays: control; incubation with 100 microm H2O2; incubation with 0.1% DSO; and co-incubation with 0.1% DSO and 100 microm H2O2. Motility and viability were determined using World Health Organization criteria. Acrosome reaction and lipid peroxidation were assessed by staining with fluorescein isothiocyanate-Pisum sativum and spectrophotometric measurement of malondialdehyde, respectively. Results showed that incubation with H2O2 alone led to a significant increase in lipid peroxidation (57.83%, P<0.05) associated with a significant decrease in sperm motility, sperm viability (after 30 min and 24 h) and percentage of reacted acrosome (P<0.05). Date seed oil improved sperm motility after 24 h of incubation (P<0.05) and protected spermatozoa against the deleterious effects of H2O2 on motility, viability, acrosome reaction and lipid peroxidation. We conclude that supplementation with DSO may have a function in antioxidant protection against male infertility.


Asunto(s)
Adulto , Humanos , Masculino , Persona de Mediana Edad , Reacción Acrosómica , Arecaceae , Supervivencia Celular , Peróxido de Hidrógeno , Farmacología , Técnicas In Vitro , Peroxidación de Lípido , Oxidantes , Farmacología , Estrés Oxidativo , Aceites de Plantas , Farmacología , Semillas , Motilidad Espermática , Espermatozoides , Biología Celular , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA