Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Sci Rep ; 14(1): 21419, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271799

RESUMEN

The Druze are a distinct group known for their close community, traditions, and consanguineous marriages, dating back to the eleventh century. This practice has led to unique genetic variations, impacting both pathology and gene-associated phenotypes. Some Druze clans, particularly those with exceptional long-lived family heads (ELLI), attracted attention. Given that the bulk of these ELLI were men, the d3GHR polymorphism was the first obvious possibility. Among the 73 clan members, 8.2% carried the d3GHR isoform, with nearly 11% being males. There was a significant age-related increase (p = 0.04) in this isoform among males, leading to examination of potential environmental mediators affecting gene regulation among these carriers during life (namely epigenetic). We focused on DNA methylation due to its crucial role in gene regulation, development, and disease progression. We analyzed DNA samples from 14 clan members with different GHR genotypes, finding a significant (p < 0.05) negative correlation between DNA methylation levels and age. Employing a biological age clock, we observed a significant + 4.229 years favoring the d3GHR group over the WT and heterozygous groups. In conclusion, this study highlights the advantage of d3GHR carriers among this unique Druze clan and underscores the importance of genotype-environment interaction in epigenetic regulation and its impact on health.


Asunto(s)
Metilación de ADN , Epigenoma , Longevidad , Humanos , Masculino , Longevidad/genética , Femenino , Epigénesis Genética , Persona de Mediana Edad , Heterocigoto , Adulto , Anciano , Anciano de 80 o más Años , Genotipo
3.
Sci Rep ; 14(1): 19981, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198552

RESUMEN

The highly polygenic nature of human longevity renders pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between aging-related traits (ARTs), we aimed to model the additive variance in lifespan as a function of the cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts (the Scripps Wellderly cohort and the Medical Genome Reference Bank (MRGB)) and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at a higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.


Asunto(s)
Pleiotropía Genética , Longevidad , Herencia Multifactorial , Humanos , Longevidad/genética , Herencia Multifactorial/genética , Femenino , Masculino , Envejecimiento/genética , Anciano , Anciano de 80 o más Años , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Estudio de Asociación del Genoma Completo , Frecuencia de los Genes
5.
Geroscience ; 46(5): 4147-4162, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724875

RESUMEN

The aging process, or senescence, is characterized by age-specific decline in physical and physiological function, and increased frailty and genomic changes, including mutation accumulation. However, the mechanisms through which changes in genomic architecture influence human longevity have remained obscure. Copy number variants (CNVs), an abundant class of genomic variants, offer unique opportunities for understanding age-related genomic changes. Here we report the spectrum of CNVs in a cohort of 670 Ashkenazi Jewish centenarians, their progeny, and unrelated controls. The average ages of these groups were 97.4 ± 2.8, 69.2 ± 9.2, and 66.5 ± 7.0 respectively. For the first time, we compared different size classes of CNVs, from 1 kB to 100 MB in size. Using a high-resolution custom Affymetrix array, targeting 44,639 genomic regions, we identified a total of 12,166, 22,188, and 10,285 CNVs in centenarians, their progeny, and control groups, respectively. Interestingly, the offspring group showed the highest number of unique CNVs, followed by control and centenarians. While both gains and losses were found in all three groups, centenarians showed a significantly higher average number of both total gains and losses relative to their controls (p < 0.0327, 0.0182, respectively). Moreover, centenarians showed a lower total length of genomic material lost, suggesting that they may maintain superior genomic integrity over time. We also observe a significance fold increase of CNVs among the offspring, implying greater genomic integrity and a putative mechanism for longevity preservation. Genomic regions that experienced loss or gains appear to be distributed across many sites in the genome and contain genes involved in DNA transcription, cellular transport, developmental pathways, and metabolic functions. Our findings suggest that the exceptional longevity observed in centenarians may be attributed to the prolonged maintenance of functionally important genes. These genes are intrinsic to specific genomic regions as well as to the overall integrity of the genomic architecture. Additionally, a strong association between longer CNVs and differential gene expression observed in this study supports the notion that genomic integrity could positively influence longevity.


Asunto(s)
Variaciones en el Número de Copia de ADN , Judíos , Longevidad , Humanos , Longevidad/genética , Judíos/genética , Anciano de 80 o más Años , Masculino , Femenino , Variaciones en el Número de Copia de ADN/genética , Anciano , Genoma Humano , Envejecimiento/genética , Envejecimiento/fisiología
6.
Aging Cell ; 23(7): e14153, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520065

RESUMEN

The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.


Asunto(s)
Apolipoproteína E4 , Encéfalo , Longevidad , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Heterocigoto , Péptidos y Proteínas de Señalización Intracelular , Longevidad/genética , Ratones Transgénicos
7.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37762211

RESUMEN

Growth hormone (GH) is a peptide hormone that plays a crucial role in controlling growth, development, and lifespan. Molecular regulation of GH is accomplished via the GH receptor (GHR), which is the main factor influencing human development and is essential to optimal functioning of the GH/IGF-I axis. Two GHR isoforms have been studied, according to the presence (flGHR) or absence (d3GHR) of exon 3. The d3GHR isoform, which lacks exon 3 has recently been related to longevity; individuals carrying this isoform have higher receptor activity, improved signal transduction, and alterations in the treatment response and efficacy compared with those carrying the wild type (WT) isoform (flGHR). Further, studies performed in patients with acromegaly, Prader-Willi syndrome, Turner syndrome, small for gestational age (SGA), and growth hormone deficiency (GHD) suggested that the d3GHR isoform may have an impact on the relationship between GH and IGF-I levels, height, weight, BMI, and other variables. Other research, however, revealed inconsistent results, which might have been caused by confounding factors, including limited sample sizes and different experimental methods. In this review, we lay out the complexity of the GHR isoforms and provide an overview of the major pharmacogenetic research conducted on this ongoing and unresolved subject.

8.
Aging (Albany NY) ; 15(16): 7922-7932, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639552

RESUMEN

Copy number variations (CNV) are a major contributor to genome variability and have been linked to aging and other degradable phenotypes such as pregnancy physiology. To demonstrate how pregnancy can be used as a model of aging, we used CNVs from pregnant mice. Candidate CNVs were selected by applying case-control analysis in human centenarians compared with control groups. These CNVs were aligned with the mouse genome and their copy variation was assessed using qRT-PCR in liver and blood tissue samples from pregnant mice throughout pregnancy (baseline; first, second, and third trimester; post-partum). Eight of the ten selected CNVs demonstrated a significant decline/increase trend throughout the pregnancy followed by opposite direction soon after delivery in the liver and blood of the mouse tissues. Furthermore, significant differential expression was detected among the candidate CNVs' close vicinity genes (APA2A, LSS, RBDHF1, PLAAT1, and SCL17A2), but not in the WSCD2 gene. Establishing a genetic link between longevity and pregnancy is a significant step toward implementing the pregnancy process as a model for aging. These results in pregnant mice highlight the mechanism and similarities between pregnancy and aging. Investigating the mechanisms that cause such rejuvenation after labor could change our aging treatment paradigm.


Asunto(s)
Envejecimiento , Variaciones en el Número de Copia de ADN , Anciano de 80 o más Años , Humanos , Femenino , Embarazo , Animales , Ratones , Longevidad , Hígado , Aciltransferasas
9.
Biol Methods Protoc ; 8(1): bpad014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576438

RESUMEN

Bacterial adhesion to tissue is the starting point for many pathogenic processes and beneficial interactions. The dynamics and speed of adhesion (minutes) make high-resolution temporal kinetic data important, but this capability is absent from the current toolset. We present a high-throughput method with a second-to-minute kinetic resolution, testing the adhesion of Pseudomonas aeruginosa PAO1 wild-type, flagella-, pili-, and quorum-sensing mutants to human embryonic kidney (HEK293) cells. Adhesion rates were in good correlation with HEK293 confluence, and the ways in which various bacterial mutations modified adhesion patterns are in agreement with the published literature. This simple assay can facilitate drug screening and treatment development as well as provide a better understanding of the interactions of pathogenic and probiotic bacteria with tissues, allowing the design of interventions and prevention treatments.

10.
Aging Cell ; 22(10): e13962, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37605876

RESUMEN

Genome-wide association studies (GWAS) have pinpointed the chromosomal locus 9p21.3 as a genetic hotspot for various age-related disorders. Common genetic variants in this locus are linked to multiple traits, including coronary artery diseases, cancers, and diabetes. Centenarians are known for their reduced risk and delayed onset of these conditions. To investigate whether this evasion of disease risks involves diminished genetic risks in the 9p21.3 locus, we sequenced this region in an Ashkenazi Jewish centenarian cohort (centenarians: n = 450, healthy controls: n = 500). Risk alleles associated with cancers, glaucoma, CAD, and T2D showed a significant depletion in centenarians. Furthermore, the risk and non-risk genotypes are linked to two distinct low-frequency variant profiles, enriched in controls and centenarians, respectively. Our findings provide evidence that the extreme longevity cohort is associated with collectively lower risks of multiple age-related diseases in the 9p21.3 locus.


Asunto(s)
Enfermedad de la Arteria Coronaria , Neoplasias , Anciano de 80 o más Años , Humanos , Centenarios , Judíos/genética , Estudio de Asociación del Genoma Completo , Longevidad/genética , Enfermedad de la Arteria Coronaria/genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
11.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37292828

RESUMEN

MicroRNAs (miRNAs) have been demonstrated to modulate life span in the invertebrates C. elegans and Drosophila by targeting conserved pathways of aging, such as insulin/IGF-1 signaling (IIS). However, a role for miRNAs in modulating human longevity has not been fully explored. Here we investigated novel roles of miRNAs as a major epigenetic component of exceptional longevity in humans. By profiling the miRNAs in B-cells from Ashkenazi Jewish centenarians and 70-year-old controls without a longevity history, we found that the majority of differentially expressed miRNAs were upregulated in centenarians and predicted to modulate the IIS pathway. Notably, decreased IIS activity was found in B cells from centenarians who harbored these upregulated miRNAs. miR-142-3p, the top upregulated miRNA, was verified to dampen the IIS pathway by targeting multiple genes including GNB2, AKT1S1, RHEB and FURIN . Overexpression of miR-142-3p improved the stress resistance under genotoxicity and induced the impairment of cell cycle progression in IMR90 cells. Furthermore, mice injected with a miR-142-3p mimic showed reduced IIS signaling and improved longevity-associated phenotypes including enhanced stress resistance, improved diet/aging-induced glucose intolerance, and longevity-associated change of metabolic profile. These data suggest that miR-142-3p is involved in human longevity through regulating IIS-mediated pro-longevity effects. This study provides strong support for the use of miR-142-3p as a novel therapeutic to promote longevity or prevent aging/aging-related diseases in human.

12.
Cells ; 12(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37190082

RESUMEN

Psychiatric disorders affect millions of individuals and their families worldwide, and the costs to society are substantial and are expected to rise due to a lack of effective treatments. Personalized medicine-customized treatment tailored to the individual-offers a solution. Although most mental diseases are influenced by genetic and environmental factors, finding genetic biomarkers that predict treatment efficacy has been challenging. This review highlights the potential of epigenetics as a tool for predicting treatment efficacy and personalizing medicine for psychiatric disorders. We examine previous studies that have attempted to predict treatment efficacy through epigenetics, provide an experimental model, and note the potential challenges at each stage. While the field is still in its infancy, epigenetics holds promise as a predictive tool by examining individual patients' epigenetic profiles in conjunction with other indicators. However, further research is needed, including additional studies, replication, validation, and application beyond clinical settings.


Asunto(s)
Antipsicóticos , Epigenómica , Trastornos Mentales , Medicina de Precisión , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Epigenómica/métodos , Resultado del Tratamiento , Farmacogenética , Antipsicóticos/uso terapéutico , Humanos
13.
Genes (Basel) ; 14(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37107603

RESUMEN

Telomere shortening or loss of shelterin components activates DNA damage response (DDR) pathways, leading to a replicative senescence that is usually coupled with a senescence-associated secretory phenotype (SASP). Recent studies suggested that telomere aberration that activates DDR may occur, irrespective of telomere length or loss of shelterin complex. The blind mole-rat (Spalax) is a subterranean rodent with exceptional longevity, and its cells demonstrate an uncoupling of senescence and SASP inflammatory components. Herein, we evaluated Spalax relative telomere length, telomerase activity, and shelterin expression, along with telomere-associated DNA damage foci (TAFs) levels with cell passage. We show that telomeres shorten in Spalax fibroblasts similar to the process in rats, and that the telomerase activity is lower. Moreover, we found lower DNA damage foci at the telomeres and a decline in the mRNA expression of two shelterin proteins, known as ATM/ATR repressors. Although additional studies are required for understanding the underling mechanism, our present results imply that Spalax genome protection strategies include effective telomere maintenance, preventing early cellular senescence induced by persistent DDR, thereby contributing to its longevity and healthy aging.


Asunto(s)
Spalax , Telomerasa , Animales , Acortamiento del Telómero/genética , Ratas Topo/genética , Ratas Topo/metabolismo , Spalax/genética , Spalax/metabolismo , Longevidad/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Complejo Shelterina
14.
Genes (Basel) ; 14(3)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36980837

RESUMEN

Epigenetics is a gene-environment interaction mechanism, manifested mostly through changes in regulatory gene expression. Stress is an established environmental factor known to induce epigenetic changes. This study aimed to assess the long-term effect of stress as juveniles, or juvenile and adult stress, on alterations in glutamic acid decarboxylase genes (GAD65, GAD67). We assessed DNA methylation and RNA expression in four rat groups: (1) control group, (2) juvenile stress group sacrificed two days following stress exposure (JSe) (RNA only), (3) juvenile stress group sacrificed as adults (JS), and (4) juvenile and adult stress group (JS + AS). Three different areas of the brain were examined in each group: the dorsal dentate gyrus (dDG), the dorsal CA1 (dCA1), and the basolateral amygdala (BLA). A significantly low methylation level of GAD65 in the BLA was observed among the JS group, followed by almost complete recovery among the JS + AS group. However, in dDG, an opposite trend was captured, and higher GAD65 methylation was found in JS. In addition, RNA levels were found to be decreased in JS compared to JSe and JS + AS. These findings can point to a possible mechanism: while juvenile stress may enhance a better coping strategy with life challenges, additional stress in adulthood may trigger a contradictory response, either beneficial or harmful.


Asunto(s)
Encéfalo , Metilación de ADN , Ratas , Animales , Epigénesis Genética , ARN
16.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768636

RESUMEN

Evidence continues to accrue that aging and its diseases can be delayed by pharmacologic and dietary strategies that target the underlying hallmarks of the aging process. However, identifying simple, safe, and effective dietary strategies involving the incorporation of whole foods that may confer some protection against the aging process is also needed. Recent observational studies have suggested that nut consumption can reduce mortality risk in humans. Among these, walnuts are particularly intriguing, given their high content of n-3 fatty acids, fiber, and antioxidant and anti-inflammatory compounds. To this end, 12-month-old male CB6F1 mice were provided either a defined control low-fat diet (LFD), a control high-fat diet (HFD), or an isocaloric HFD containing 7.67% walnuts by weight (HFD + W), and measures of healthspan and related biochemical markers (n = 10-19 per group) as well as survival (n = 20 per group) were monitored. Mice provided the HFD or HFD + W demonstrated marked weight gain, but walnuts lowered baseline glucose (p < 0.05) and tended to temper the effects of HFD on liver weight gain (p < 0.05) and insulin tolerance (p = 0.1). Additional assays suggested a beneficial effect on some indicators of health with walnut supplementation, including preservation of exercise capacity and improved short-term working memory, as determined by Y maze (p = 0.02). However, no effect was observed via any diet on inflammatory markers, antioxidant capacity, or survival (p = 0.2). Ingenuity Pathway Analysis of the hippocampal transcriptome identified two processes predicted to be affected by walnuts and potentially linked to cognitive function, including estrogen signaling and lipid metabolism, with changes in the latter confirmed by lipidomic analysis. In summary, while walnuts did not significantly improve survival on a HFD, they tended to preserve features of healthspan in the context of a metabolic stressor with aging.


Asunto(s)
Juglans , Humanos , Masculino , Ratones , Animales , Anciano , Lactante , Juglans/química , Nueces/química , Dieta Alta en Grasa/efectos adversos , Lipidómica , Antioxidantes/análisis , Aumento de Peso , Ratones Endogámicos C57BL
17.
Geroscience ; 45(1): 311-330, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35948858

RESUMEN

Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.


Asunto(s)
Genes Mitocondriales , Longevidad , Anciano de 80 o más Años , Humanos , Longevidad/genética , Envejecimiento/genética , Mitocondrias/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento
18.
medRxiv ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168353

RESUMEN

The highly polygenic nature of human longevity renders cross-trait pleiotropy an indispensable feature of its genetic architecture. Leveraging the genetic correlation between the aging-related traits (ARTs), we sought to model the additive variance in lifespan as a function of cumulative liability from pleiotropic segregating variants. We tracked allele frequency changes as a function of viability across different age bins and prioritized 34 variants with an immediate implication on lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear interactions between the genetic determinants of longevity, we reasoned that a composite polygenic score would approximate a substantial portion of the variance in lifespan and developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional survival. We showed that coefficients derived from our ensemble model could potentially reveal an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive performance of our model for distinguishing the enrichment of exceptional longevity among long-lived individuals in two replication cohorts and showed that the median lifespan in the highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the proteomic correlates of iLGS, we identified protein markers associated with exceptional longevity irrespective of chronological age and prioritized drugs with repurposing potentials for gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting the identification of individuals at higher risk of mortality for targeted lifestyle modifications earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down aging and extend lifespan.

19.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36455558

RESUMEN

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Asunto(s)
Judíos , Población Blanca , Humanos , Judíos/genética , Genética de Población , Genoma Humano
20.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293556

RESUMEN

Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.


Asunto(s)
Diabetes Gestacional , Preeclampsia , Embarazo , Femenino , Humanos , Epigénesis Genética , Epigenómica , Metilación de ADN , Preeclampsia/genética , Preeclampsia/patología , Diabetes Gestacional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA