Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Biol ; 1(6): e46, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38938292

RESUMEN

Extracellular vesicles (EVs) have been implicated in the intercellular transfer of RNA and proteins through cellular secretion into the extracellular space. In blood plasma, circulating EVs are mainly derived from blood cells; however, factors that control plasma EV abundance are largely unknown. Here, we estimate the EV secretion rates for blood cell types using reported values for cell-specific plasma EV abundances and their parental cell's ubiquity in healthy humans. While we found that plasma contains on average ∼2 plasma EVs/cell, the cell-specific EV-to-cell ratio spanned four orders of magnitude from 0.13 ± 0.1 erythrocyte-derived EVs/erythrocyte to (1.9 ± 1.3) × 103 monocyte-derived EVs/monocyte. The steady-state plasma EV level was maintained by an estimated plasma EV secretion rate of (1.5 ± 0.4) ×  1012 EVs/min. The cell-specific secretion rate estimates were highest for monocytes (45 ± 21 EVs/cell/min) and lowest for erythrocytes ((3.2 ± 3.0) ×  10-3 EVs/cell/min). The estimated basal cell-specific EV secretion rates were not significantly correlated to the cell's lifespan or size; however, we observed a highly significant correlation to cellular mitochondrial enzyme activities. Together, our analysis indicates that cell-specific mitochondrial metabolism, for example, via reactive oxygen species, affects plasma EV abundance through increased secretion rates, and the results provide a resource for understanding EV function in human health and disease.

2.
J Extracell Vesicles ; 8(1): 1656042, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552133

RESUMEN

Recent studies on extracellular RNA raised awareness that extracellular vesicles (EVs) isolated from cultured cells may co-purify RNAs derived from media supplements such as fetal bovine serum (FBS) confounding EV-associated RNA. Defined culture media supplemented with a range of nutrient components provide an alternative to FBS addition and allow EV-collection under full medium conditions avoiding starvation and cell stress during the collection period. However, the potential contribution of serum-free media supplements to EV-RNA contamination has remained elusive and has never been assessed. Here, we report that RNA isolated from EVs harvested from cells under serum-replacement conditions includes miRNA contaminants carried into the sample by defined media components. Subjecting unconditioned, EV-free medium to differential centrifugation followed by reverse transcription quantitative PCR (RT-qPCR) on RNA isolated from the pellet resulted in detection of miRNAs that had been classified as EV-enriched by RNA-seq or RT-qPCR of an isolated EV-fraction. Ribonuclease (RNase-A) and detergent treatment removed most but not all of the contaminating miRNAs. Further analysis of the defined media constituents identified Catalase as a main source of miRNAs co-isolating together with EVs. Hence, miRNA contaminants can be carried into EV-samples even under serum-free harvesting conditions using culture media that are expected to be chemically defined. Formulation of miRNA-free media supplements may provide a solution to collect EVs clean from confounding miRNAs, which however still remains a challenging task. Differential analysis of EVs collected under full medium and supplement-deprived conditions appears to provide a strategy to discriminate confounding and EV-associated RNA. In conclusion, we recommend careful re-evaluation and validation of EV small RNA-seq and RT-qPCR datasets by determining potential medium background.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA