Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Respir Physiol Neurobiol ; 311: 104035, 2023 05.
Article En | MEDLINE | ID: mdl-36792044

The perception of breathlessness is mechanistically linked to the awareness of increased inspiratory neural drive (IND). Stimulation of upper airway cold receptors on the trigeminal nerve (TGN) with TGN agonists such as menthol or cool air to the face/nose has been hypothesized to reduce breathlessness by decreasing IND. The aim of this systematic scoping review was to identify and summarize the results of studies in animals and humans reporting on the impact of TGN stimulation or blockade on measures of IND. Thirty-one studies were identified, including 19 in laboratory animals and 12 in human participants. Studies in laboratory animals consistently reported that as TGN activity increased, measures of IND decreased (e.g., phrenic nerve activity). In humans, stimulation of the TGN with a stream of cool air to the face/nose decreased the sensitivity of the ventilatory chemoreflex response to hypercapnia. Otherwise, TGN stimulation with menthol or cool air to the face/note had no effect on measures of IND in humans. This review provides new insight into a potential neural mechanism of breathlessness relief with selected TGN agonists.


Menthol , Olfactory Nerve , Animals , Humans , Menthol/pharmacology , Dyspnea , Nose , Trigeminal Nerve/physiology
2.
Respir Physiol Neurobiol ; 311: 104036, 2023 05.
Article En | MEDLINE | ID: mdl-36804472

Breathlessness is a centrally processed symptom, as evidenced by activation of distinct brain regions such as the insular cortex and amygdala, during the anticipation and/or perception of breathlessness. Inhaled L-menthol or blowing cool air to the face/nose, both selective trigeminal nerve (TGN) stimulants, relieve breathlessness without concurrent improvements in physiological outcomes (e.g., breathing pattern), suggesting a possible but hitherto unexplored central mechanism of action. Four databases were searched to identify published reports supporting a link between TGN stimulation and activation of brain regions involved in the anticipation and/or perception of breathlessness. The collective results of the 29 studies demonstrated that TGN stimulation activated 12 brain regions widely implicated in the anticipation and/or perception of breathlessness, including the insular cortex and amygdala. Inhaled L-menthol or cool air to the face activated 75% and 33% of these 12 brain regions, respectively. Our findings support the hypothesis that TGN stimulation contributes to breathlessness relief by altering the activity of brain regions involved in its central neural processing.


Olfactory Nerve , Olfactory Perception , Humans , Menthol , Brain/physiology , Dyspnea , Perception , Trigeminal Nerve/physiology , Magnetic Resonance Imaging , Olfactory Perception/physiology
3.
Brain Sci ; 10(11)2020 Oct 29.
Article En | MEDLINE | ID: mdl-33137993

Introduction: Regular aerobic exercise is associated with better executive function in older adults. It is unclear if high-intensity-interval-training (HIIT) elicits moderate-intensity continuous training (MICT) or resistance training (RT). We hypothesized that HIIT would augment executive function more than MICT and RT. Methods: Sixty-nine older adults (age: 68 ± 7 years) performed six weeks (three days/week) of HIIT (2 × 20 min bouts alternating between 15 s intervals at 100% of peak power output (PPO) and passive recovery (0% PPO); n = 24), MICT (34 min at 60% PPO; n = 19), or whole-body RT (eight exercise superior improvements in executive function of older adults than moderate-intensity-continuous-training, 2 × 10 repetitions; n = 26). Cardiorespiratory fitness (i.e., V˙O2max) and executive function were assessed before and after each intervention via a progressive maximal cycle ergometer protocol and the Stroop Task, respectively. Results: The V˙O2max findings revealed a significant group by time interaction (p = 0.001) in which all groups improved following training, but HIIT and MICT improved more than RT. From pre- to post-training, no interaction in the naming condition of the Stroop Task was observed (p > 0.10). However, interaction from pre- to post-training by group was observed, and only the HIIT group exhibited a faster reaction time (from 1250 ± 50 to 1100 ± 50 ms; p < 0.001) in switching (cognitive flexibility). Conclusion: Despite similar improvements in cardiorespiratory fitness, HIIT, but not MICT nor RT, enhanced cognitive flexibility in older adults. Exercise programs should consider using HIIT protocols in an effort to combat cognitive decline in older adults.

...