Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Ann Biomed Eng ; 52(2): 239-249, 2024 Feb.
Article En | MEDLINE | ID: mdl-37726437

Mechanical tests on bone plates are mandatory for regulatory purposes and, typically, the ASTM F382 standard is used, which involves a four-point bending test setup to evaluate the cyclic bending fatigue performance of the bone plate. These test campaigns require a considerable financial outlay and long execution times; therefore, an accurate prediction of experimental outcomes can reduce test runtime with beneficial cost cuts for manufacturers. Hence, an analytical framework is here proposed for the direct estimation of the maximum bending moment of a bone plate under fatigue loading, to guide the identification of the runout load for regulatory testing. Eleven bone plates awaiting certification were subjected to a comprehensive testing campaign following ASTM F382 protocols to evaluate their static and fatigue bending properties. An analytical prediction of the maximum bending moment was subsequently implemented based on ultimate strength and plate geometry. The experimental loads obtained from fatigue testing were then used to verify the prediction accuracy of the analytical approach. Results showed promising predictive ability, with R2 coefficients above 0.95 in the runout condition, with potential impact in reducing the experimental tests needed for the CE marking of bone plates.


Bone Plates , Mechanical Tests , Tensile Strength , Materials Testing , Biomechanical Phenomena
2.
Ann Biomed Eng ; 50(2): 211-221, 2022 Feb.
Article En | MEDLINE | ID: mdl-35044572

Severe predictions have been made regarding osteoporotic fracture incidence for the next years, with major economic and social impacts in a worldwide greying society. However, the performance of the currently adopted gold standard for fracture risk prediction, the areal Bone Mineral Density (aBMD), remains moderate. To overcome current limitations, the construction of statistical models of the proximal femur, based on three-dimensional shape and intensity (a hallmark of bone density), is here proposed for predicting hip fracture in a Caucasian postmenopausal cohort. Partial Least Square (PLS)-based statistical models of the shape, intensity and their combination were developed, and the corresponding modes and components were identified. Logistic regression models using the first two shape, intensity and shape-intensity PLS components were implemented and tested within a 10-fold cross-validation procedure as predictors of hip fracture. It emerged that (1) intensity components were superior to shape components in stratifying patients according to their fracture status, and that (2) a combination of intensity and shape improved patients risk stratification. The area under the ROC curve was 0.64, 0.85 and 0.92 for the models based on shape, intensity and shape-intensity combination respectively, against a 0.72 value for the aBMD standard approach. Based on these findings, the presented methodology turns out to be promising in tackling the need for an enhanced fracture risk assessment.


Hip Fractures/etiology , Models, Statistical , Osteoporotic Fractures/etiology , Risk Assessment , Aged , Aged, 80 and over , Bone Density , Female , Femur/physiopathology , Humans , Middle Aged , Postmenopause/physiology , Predictive Value of Tests , ROC Curve
3.
Materials (Basel) ; 14(7)2021 Mar 26.
Article En | MEDLINE | ID: mdl-33810492

Employment and the effect of eco-friendly bismuth oxide nanoparticles (BiONPs) in bio-cement were studied. The standard method was adopted to prepare BiONPs-composite. Water was adopted for dispersing BiONPs in the composite. A representative batch (2 wt. % of BiONPs) was prepared without water to study the impact of water on composite properties. For each batch, 10 samples were prepared and tested. TGA (thermogravimetric analysis) performed on composite showed 0.8 wt. % losses in samples prepared without water whereas, maximum 2 wt. % weight losses observed in the water-based composite. Presence of BiONPs resulted in a decrease in depth of curing. Three-point bending flexural strength decreased for increasing BiONPs content. Comparative study between 2 wt. % samples with and without water showed 10.40 (±0.91) MPa and 28.45 (±2.50) MPa flexural strength values, respectively, indicating a significant (p < 0.05) increase of the mechanical properties at the macroscale. Nanoindentation revealed that 2 wt. % without water composites showed significant (p < 0.05) highest nanoindentation modulus 26.4 (±1.28) GPa and hardness 0.46 (±0.013) GPa. Usage of water as dispersion media was found to be deleterious for the overall characteristics of the composite but, at the same time, the BiONPs acted as a very promising filler that can be used in this class of composites.

4.
Muscles Ligaments Tendons J ; 7(4): 493-502, 2017.
Article En | MEDLINE | ID: mdl-29721450

The elbow ligamentous and bony structures play essential roles in the joint stability. Nevertheless, the contribution of different structures to joint stability is not yet clear and a comprehensive experimental investigation into the ligament and osseous constraints changes in relation to joint motions would be uphill and somehow unattainable, due to the impossibility of obtaining all the possible configurations on the same specimen. Therefore, a predictive tool of the joint behavior after the loss of retentive structures would be helpful in designing reconstructive surgeries and in pre-operative planning. In this work, a multibody model consisting of bones and non-linear ligamentous structures is presented and validated through comparison with experimental data. An accurate geometrical model was equipped with non-linear ligaments bundles between optimized origin and insertion points. The joint function was simulated according to maneuvers accomplished in published experimental studies which explored the posteromedial rotatory instability (PMRI) in coronoid and posterior medial collateral ligament (PB) deficient elbows. Moreover, a complete design of experiments (DOE) was explored, investigating the influence of the elbow flexion degree, of the coronoid process and of the medial collateral ligaments (MCL) structures (anterior and posterior bundles) in the elbow joint opening. The implemented computational model accurately predicted the joint behavior with intact and deficient stabilizing structures at each flexion degree, and highlighted the statistically significant influence of the MCL structures (P<0.05) on the elbow stability. The predictive ability of this multibody elbow joint model let foresee that future investigations under different loading scenarios and injured or surgically reconstructed states could be effectively simulated, helping the ligaments reconstruction optimization in terms of bone tunnel localizations and grafts pre-loading. LEVEL OF EVIDENCE: V.

...