Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Eur Respir J ; 61(6)2023 06.
Article En | MEDLINE | ID: mdl-37024132

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Pulmonary Arterial Hypertension , Mice , Animals , Pulmonary Arterial Hypertension/complications , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Hypoxia/metabolism
2.
Chest ; 161(4): 1060-1072, 2022 04.
Article En | MEDLINE | ID: mdl-34655569

Pulmonary arterial hypertension (PAH) is a rare disease associated with abnormally elevated pulmonary pressures and right heart failure resulting in high morbidity and mortality. Although the prognosis for patients with PAH has improved with the introduction of pulmonary vasodilators, disease progression remains a major problem. Given that available therapies are inadequate for preventing small-vessel loss and obstruction, there is active interest in identifying drugs capable of targeting angiogenesis and mechanisms involved in the regulation of cell growth and fibrosis. Among the mechanisms linked to PAH pathogenesis, preclinical studies have identified promising compounds that are currently being tested in clinical trials. These drugs target seven of the major mechanisms associated with PAH pathogenesis: bone morphogenetic protein signaling, tyrosine kinase receptors, estrogen metabolism, extracellular matrix, angiogenesis, epigenetics, and serotonin metabolism. In this review, we discuss the preclinical studies that led to prioritization of these mechanisms, and discuss completed and ongoing phase 2/3 trials using novel interventions such as sotatercept, anastrozole, rodatristat ethyl, tyrosine kinase inhibitors, and endothelial progenitor cells, among others. We anticipate that the next generation of compounds will build on the success of the current standard of care and improve clinical outcomes and quality of life for patients with PAH.


Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Familial Primary Pulmonary Hypertension/complications , Heart Failure/complications , Humans , Quality of Life
3.
Am J Respir Cell Mol Biol ; 62(6): 747-759, 2020 06.
Article En | MEDLINE | ID: mdl-32084325

Pulmonary artery smooth muscle cells (PASMCs) and pericytes are NG2+ mural cells that provide structural support to pulmonary arteries and capillaries. In pulmonary arterial hypertension (PAH), both mural cell types contribute to PA muscularization, but whether similar mechanisms are responsible for their behavior is unknown. RNA-seq was used to compare the gene profile of pericytes and PASMCs from PAH and healthy lungs. NG2-Cre-ER mice were used to generate NG2-selective reporter mice (NG2tdT) for cell lineage identification and tamoxifen-inducible mice for NG2-selective SDF1 knockout (SDF1NG2-KO). Hierarchical clustering of RNA-seq data demonstrated that the genetic profile of PAH pericytes and PASMCs is highly similar. Cellular lineage staining studies on NG2tdT mice in chronic hypoxia showed that, similar to PAH, tdT+ cells accumulate in muscularized microvessels and demonstrate significant upregulation of SDF1, a chemokine involved in chemotaxis and angiogenesis. Compared with control mice, SDF1NG2-KO mice in chronic hypoxia had reduced muscularization and lower abundance of NG2+ cells around microvessels. SDF1 stimulation in healthy pericytes induced greater contractility and impaired their capacity to establish endothelial-pericyte communications. In contrast, SDF1 knockdown reduced PAH pericyte contractility and improved their capacity to associate with vascular tubes in coculture. SDF1 is upregulated in NG2+ mural cells and is associated with PA muscularization. Targeting SDF1 could help prevent and/or reverse muscularization in PAH.


Chemokine CXCL12/physiology , Hypertension, Pulmonary/etiology , Hypoxia/complications , Myocytes, Smooth Muscle/metabolism , Pericytes/metabolism , Animals , Antigens/analysis , Benzylamines , Cell Division , Cell Lineage , Chemokine CXCL12/genetics , Chronic Disease , Cyclams , DNA Nucleotidylexotransferase/analysis , Gene Expression Regulation , Gene Knockdown Techniques , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/prevention & control , Hypoxia/metabolism , Mice , Mice, Transgenic , Models, Biological , Proteoglycans/analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, CXCR4/antagonists & inhibitors , Recombinant Proteins/pharmacology , Signal Transduction , Vasoconstriction
...