Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(11): 1764-1777.e5, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537641

RESUMEN

Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states. Demonstrations in pharmacological, locomotor, and acute and social stress tests and in optogenetic studies offer unique insights into the coordination of physio-behavioral characteristics associated with healthy and perturbed states. This technology has broad utility in neuroscience, physiology, behavior, and other areas that rely on studies of freely moving, small animal models.


Asunto(s)
Conducta Animal , Optogenética , Tecnología Inalámbrica , Animales , Conducta Animal/fisiología , Optogenética/métodos , Ratones , Frecuencia Cardíaca/fisiología , Masculino , Prótesis e Implantes , Frecuencia Respiratoria/fisiología , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Algoritmos
2.
Nat Protoc ; 18(2): 374-395, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36411351

RESUMEN

Genetic engineering and implantable bioelectronics have transformed investigations of cardiovascular physiology and disease. However, the two approaches have been difficult to combine in the same species: genetic engineering is applied primarily in rodents, and implantable devices generally require larger animal models. We recently developed several miniature cardiac bioelectronic devices suitable for mice and rats to enable the advantages of molecular tools and implantable devices to be combined. Successful implementation of these device-enabled studies requires microsurgery approaches that reliably interface bioelectronics to the beating heart with minimal disruption to native physiology. Here we describe how to perform an open thoracic surgical technique for epicardial implantation of wireless cardiac pacemakers in adult rats that has lower mortality than transvenous implantation approaches. In addition, we provide the methodology for a full biocompatibility assessment of the physiological response to the implanted device. The surgical implantation procedure takes ~40 min for operators experienced in microsurgery to complete, and six to eight surgeries can be completed in 1 d. Implanted pacemakers provide programmed electrical stimulation for over 1 month. This protocol has broad applications to harness implantable bioelectronics to enable fully conscious in vivo studies of cardiovascular physiology in transgenic rodent disease models.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Marcapaso Artificial , Animales , Ratones , Ratas , Procedimientos Quirúrgicos Cardíacos/métodos
3.
Sci Adv ; 8(43): eabq7469, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288311

RESUMEN

Monitoring and control of cardiac function are critical for investigation of cardiovascular pathophysiology and developing life-saving therapies. However, chronic stimulation of the heart in freely moving small animal subjects, which offer a variety of genotypes and phenotypes, is currently difficult. Specifically, real-time control of cardiac function with high spatial and temporal resolution is currently not possible. Here, we introduce a wireless battery-free device with on-board computation for real-time cardiac control with multisite stimulation enabling optogenetic modulation of the entire rodent heart. Seamless integration of the biointerface with the heart is enabled by machine learning-guided design of ultrathin arrays. Long-term pacing, recording, and on-board computation are demonstrated in freely moving animals. This device class enables new heart failure models and offers a platform to test real-time therapeutic paradigms over chronic time scales by providing means to control cardiac function continuously over the lifetime of the subject.

4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301889

RESUMEN

Wireless, battery-free, and fully subdermally implantable optogenetic tools are poised to transform neurobiological research in freely moving animals. Current-generation wireless devices are sufficiently small, thin, and light for subdermal implantation, offering some advantages over tethered methods for naturalistic behavior. Yet current devices using wireless power delivery require invasive stimulus delivery, penetrating the skull and disrupting the blood-brain barrier. This can cause tissue displacement, neuronal damage, and scarring. Power delivery constraints also sharply curtail operational arena size. Here, we implement highly miniaturized, capacitive power storage on the platform of wireless subdermal implants. With approaches to digitally manage power delivery to optoelectronic components, we enable two classes of applications: transcranial optogenetic activation millimeters into the brain (validated using motor cortex stimulation to induce turning behaviors) and wireless optogenetics in arenas of more than 1 m2 in size. This methodology allows for previously impossible behavioral experiments leveraging the modern optogenetic toolkit.


Asunto(s)
Encéfalo/fisiología , Optogenética , Prótesis e Implantes/estadística & datos numéricos , Estimulación Transcraneal de Corriente Directa/instrumentación , Tecnología Inalámbrica/instrumentación , Animales , Ratones , Ratones Endogámicos C57BL
5.
Nat Commun ; 12(1): 1968, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785751

RESUMEN

Wireless battery free and fully implantable tools for the interrogation of the central and peripheral nervous system have quantitatively expanded the capabilities to study mechanistic and circuit level behavior in freely moving rodents. The light weight and small footprint of such devices enables full subdermal implantation that results in the capability to perform studies with minimal impact on subject behavior and yields broad application in a range of experimental paradigms. While these advantages have been successfully proven in rodents that move predominantly in 2D, the full potential of a wireless and battery free device can be harnessed with flying species, where interrogation with tethered devices is very difficult or impossible. Here we report on a wireless, battery free and multimodal platform that enables optogenetic stimulation and physiological temperature recording in a highly miniaturized form factor for use in songbirds. The systems are enabled by behavior guided primary antenna design and advanced energy management to ensure stable optogenetic stimulation and thermography throughout 3D experimental arenas. Collectively, these design approaches quantitatively expand the use of wireless subdermally implantable neuromodulation and sensing tools to species previously excluded from in vivo real time experiments.


Asunto(s)
Neuroestimuladores Implantables , Fenómenos Fisiológicos del Sistema Nervioso , Optogenética/instrumentación , Pájaros Cantores/fisiología , Telemetría/instrumentación , Tecnología Inalámbrica/instrumentación , Animales , Encéfalo/fisiología , Optogenética/métodos , Nervios Periféricos/fisiología , Reproducibilidad de los Resultados , Telemetría/métodos
6.
Nat Commun ; 10(1): 5742, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848334

RESUMEN

Small animals support a wide range of pathological phenotypes and genotypes as versatile, affordable models for pathogenesis of cardiovascular diseases and for exploration of strategies in electrotherapy, gene therapy, and optogenetics. Pacing tools in such contexts are currently limited to tethered embodiments that constrain animal behaviors and experimental designs. Here, we introduce a highly miniaturized wireless energy-harvesting and digital communication electronics for thin, miniaturized pacing platforms weighing 110 mg with capabilities for subdermal implantation and tolerance to over 200,000 multiaxial cycles of strain without degradation in electrical or optical performance. Multimodal and multisite pacing in ex vivo and in vivo studies over many days demonstrate chronic stability and excellent biocompatibility. Optogenetic stimulation of cardiac cycles with in-animal control and induction of heart failure through chronic pacing serve as examples of modes of operation relevant to fundamental and applied cardiovascular research and biomedical technology.


Asunto(s)
Ingeniería Biomédica/métodos , Dispositivos de Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca/etiología , Miniaturización , Optogenética/métodos , Animales , Modelos Animales de Enfermedad , Suministros de Energía Eléctrica , Femenino , Humanos , Preparación de Corazón Aislado , Masculino , Ratones , Ratones Transgénicos , Tecnología Inalámbrica
7.
Proc Natl Acad Sci U S A ; 116(43): 21427-21437, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31601737

RESUMEN

Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.


Asunto(s)
Optogenética/métodos , Farmacología/métodos , Animales , Encéfalo/metabolismo , Química Encefálica , Channelrhodopsins/metabolismo , Estimulación Eléctrica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética/instrumentación , Farmacología/instrumentación , Prótesis e Implantes , Tecnología Inalámbrica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA