Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Neuropsychopharmacology ; 49(5): 824-836, 2024 Apr.
Article En | MEDLINE | ID: mdl-37684522

The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.


Corpus Striatum , Neostriatum , Mice , Animals , Leucine/metabolism , Neostriatum/metabolism , Corpus Striatum/metabolism , Alcohol Drinking , Ethanol/pharmacology , Receptors, Dopamine D1/metabolism , Bias
2.
J Neurosci Res ; 98(7): 1457-1467, 2020 07.
Article En | MEDLINE | ID: mdl-32162391

Traumatic early life stress (ELS) is linked to dopamine (DA) dysregulation which increases the probability of developing psychiatric disorders in adolescence and adulthood. Our prior studies demonstrated that a severe early life stressor, a 24-hr maternal deprivation (MD) in juvenile male rats, could lead to altered DA signaling from the ventral tegmental area (VTA) due to impairment of GABAergic synaptic plasticity (promoting GABAergic long-term depression, LTD) with concomitant changes in the abundance of synaptic regulators including A-kinase anchoring protein (AKAP150). Importantly, these MD-induced synaptic changes in the VTA were accompanied by upregulation of histone deacetylase 2, histone hypoacetylation, and were reversible by HDAC inhibition. Using cell-attached and whole-cell patch clamp recordings, we found that MD stress also increased spontaneous VTA DA neuronal activity and excitability in juvenile male rats without affecting intrinsic excitability. Postsynaptic chemical disruption of AKAP150 and protein kinase A interaction increased VTA DA neuronal excitability in control non-MD rats mimicking the effects of MD on DA cell excitability with similar changes in membrane properties. Interestingly, this disruption decreased MD-induced VTA DA hyperexcitability. This MD-induced DA neuronal hyperexcitability could also be normalized at 24 hr after injection of the class 1 HDAC inhibitor, CI-994. Altogether, our data suggest that AKAP150 plays a critical role in the regulation of VTA DA neuronal excitability and that HDAC-mediated targeting of AKAP150 signaling could normalize VTA DA dysfunction following ELS thereby providing novel therapeutic targets for prevention of later life psychopathology.


A Kinase Anchor Proteins/metabolism , Action Potentials/drug effects , Dopaminergic Neurons/drug effects , Histone Deacetylase Inhibitors/pharmacology , Maternal Deprivation , Ventral Tegmental Area/drug effects , Animals , Benzamides/pharmacology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Male , Patch-Clamp Techniques , Phenylenediamines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Synaptic Transmission/drug effects , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology
3.
Biol Psychiatry ; 87(11): 967-978, 2020 06 01.
Article En | MEDLINE | ID: mdl-31937415

BACKGROUND: A clinical hallmark of alcohol use disorder is persistent drinking despite potential adverse consequences. The ventromedial prefrontal cortex (vmPFC) and dorsomedial prefrontal cortex (dmPFC) are positioned to exert top-down control over subcortical regions, such as the nucleus accumbens shell (NAcS) and basolateral amygdala, which encode positive and negative valence of ethanol (EtOH)-related stimuli. Prior rodent studies have implicated these regions in regulation of punished EtOH self-administration (EtOH-SA). METHODS: We conducted in vivo electrophysiological recordings in mouse vmPFC and dmPFC to obtain neuronal correlates of footshock-punished EtOH-SA. Ex vivo recordings were performed in NAcS D1 receptor-expressing medium spiny neurons receiving vmPFC input to examine punishment-related plasticity in this pathway. Optogenetic photosilencing was employed to assess the functional contribution of the vmPFC, dmPFC, vmPFC projections to NAcS, or vmPFC projections to basolateral amygdala, to punished EtOH-SA. RESULTS: Punishment reduced EtOH lever pressing and elicited aborted presses (lever approach followed by rapid retraction). Neurons in the vmPFC and dmPFC exhibited phasic firing to EtOH lever presses and aborts, but only in the vmPFC was there a population-level shift in coding from lever presses to aborts with punishment. Closed-loop vmPFC, but not dmPFC, photosilencing on a postpunishment probe test negated the reduction in EtOH lever presses but not in aborts. Punishment was associated with altered plasticity at vmPFC inputs to D1 receptor-expressing medium spiny neurons in the NAcS. Photosilencing vmPFC projections to the NAcS, but not to the basolateral amygdala, partially reversed suppression of EtOH lever presses on probe testing. CONCLUSIONS: These findings demonstrate a key role for the vmPFC in regulating EtOH-SA after punishment, with implications for understanding the neural basis of compulsive drinking in alcohol use disorder.


Ethanol , Nucleus Accumbens , Animals , Mice , Prefrontal Cortex , Punishment , Self Administration
4.
Sci Signal ; 11(520)2018 03 06.
Article En | MEDLINE | ID: mdl-29511121

Centrally released corticotropin-releasing factor or hormone (extrahypothalamic CRF or CRH) in the brain is involved in the behavioral and emotional responses to stress. The lateral habenula (LHb) is an epithalamic brain region involved in value-based decision-making and stress evasion. Through its inhibition of dopamine-mediated reward circuitry, the increased activity of the LHb is associated with addiction, depression, schizophrenia, and behavioral disorders. We found that extrahypothalamic CRF neurotransmission increased neuronal excitability in the LHb. Through its receptor CRFR1 and subsequently protein kinase A (PKA), CRF application increased the intrinsic excitability of LHb neurons by affecting changes in small-conductance SK-type and large-conductance BK-type K+ channels. CRF also reduced inhibitory γ-aminobutyric acid-containing (GABAergic) synaptic transmission onto LHb neurons through endocannabinoid-mediated retrograde signaling. Maternal deprivation is a severe early-life stress that alters CRF neural circuitry and is likewise associated with abnormal mental health later in life. LHb neurons from pups deprived of maternal care exhibited increased intrinsic excitability, reduced GABAergic transmission, decreased abundance of SK2 channel protein, and increased activity of PKA, without any substantial changes in Crh or Crhr1 expression. Furthermore, maternal deprivation blunted the response of LHb neurons to subsequent, acute CRF exposure. Activating SK channels or inhibiting postsynaptic PKA activity prevented the effects of both CRF and maternal deprivation on LHb intrinsic excitability, thus identifying potential pharmacological targets to reverse central CRF circuit dysregulation in patients with associated disorders.


Corticotropin-Releasing Hormone/metabolism , Habenula/metabolism , Stress, Psychological/metabolism , Synaptic Transmission/physiology , Action Potentials/drug effects , Animals , Corticotropin-Releasing Hormone/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Excitatory Postsynaptic Potentials/drug effects , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Habenula/cytology , Habenula/drug effects , Male , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism , Signal Transduction/drug effects , Stress, Psychological/physiopathology , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacology
5.
J Neurophysiol ; 116(3): 1093-103, 2016 09 01.
Article En | MEDLINE | ID: mdl-27306674

Dopamine (DA) dysfunction originating from the ventral tegmental area (VTA) occurs as a result of synaptic abnormalities following consumption of drugs of abuse and underlies behavioral plasticity associated with drug abuse. Drugs of abuse can cause changes in gene expression through epigenetic mechanisms in the brain that underlie some of the lasting neuroplasticity and behavior associated with addiction. Here we investigated the function of histone acetylation and histone deacetylase (HDAC)2 in the VTA in recovery of morphine-induced synaptic modifications following a single in vivo exposure to morphine. Using a combination of immunohistochemistry, Western blot, and whole cell patch-clamp recording in rat midbrain slices, we show that morphine increased HDAC2 activity in VTA DA neurons and reduced histone H3 acetylation at lysine 9 (Ac-H3K9) in the VTA 24 h after the injection. Morphine-induced synaptic changes at glutamatergic synapses involved endocannabinoid signaling to reduce GABAergic synaptic strength onto VTA DA neurons. Both plasticities were recovered by in vitro incubation of midbrain slices with a class I-specific HDAC inhibitor (HDACi), CI-994, through an increase in acetylation of histone H3K9. Interestingly, HDACi incubation also increased levels of Ac-H3K9 and triggered GABAergic and glutamatergic plasticities in DA neurons of saline-treated rats. Our results suggest that acute morphine-induced changes in VTA DA activity and synaptic transmission engage HDAC2 activity locally in the VTA to maintain synaptic modifications through histone hypoacetylation.


Histone Deacetylase 2/metabolism , Morphine/pharmacology , Narcotics/pharmacology , Neuronal Plasticity/drug effects , Ventral Tegmental Area/drug effects , Animals , Animals, Newborn , Benzoxazines/pharmacology , Calcium Channel Blockers/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Histone Deacetylase Inhibitors/pharmacology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Morpholines/pharmacology , Naphthalenes/pharmacology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Tyrosine 3-Monooxygenase/metabolism
6.
Neuron ; 86(5): 1240-52, 2015 Jun 03.
Article En | MEDLINE | ID: mdl-26050042

Adverse early-life experiences such as child neglect and abuse increase the risk of developing addiction and stress-related disorders through alterations in motivational systems including the mesolimbic dopamine (DA) pathway. Here we investigated whether a severe early-life stress (i.e., maternal deprivation, MD) promotes DA dysregulation through an epigenetic impairment of synaptic plasticity within ventral tegmental area (VTA) DA neurons. Using a single 24-hr episode of MD and whole-cell patch clamp recording in rat midbrain slices, we show that MD selectively induces long-term depression (LTD) and shifts spike timing-dependent plasticity (STDP) toward LTD at GABAergic synapses onto VTA DA neurons through epigenetic modifications of postsynaptic scaffolding A-kinase anchoring protein 79/150 (AKAP79/150) signaling. Histone deacetylase (HDAC) inhibition rescues GABAergic metaplasticity and normalizes AKAP signaling in MD animals. MD-induced reversible HDAC-mediated GABAergic dysfunction within the VTA may be a mechanistic link for increased propensity to mental health disorders following MD.


A Kinase Anchor Proteins/physiology , GABAergic Neurons/physiology , Histone Deacetylase Inhibitors/pharmacology , Maternal Deprivation , Neuronal Plasticity/physiology , Signal Transduction/physiology , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABAergic Neurons/drug effects , Male , Neuronal Plasticity/drug effects , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
7.
J Physiol ; 591(19): 4699-710, 2013 Oct 01.
Article En | MEDLINE | ID: mdl-23897235

Persistent changes in excitatory and inhibitory synaptic strengths to the ventral tegmental area (VTA) dopamine (DA) neurons in response to addictive drugs may underlie the transition from casual to compulsive drug use. While an enormous amount of work has been done in the area of glutamatergic plasticity of the VTA, little is known regarding the learning rules governing GABAergic plasticity in the VTA. Spike timing-dependent plasticity, STDP, has attracted considerable attention primarily due to its potential roles in processing and storage of information in the brain and there is emerging evidence for the existence of STDP at inhibitory synapses. We therefore used whole-cell recordings in rat midbrain slices to investigate whether near-coincident pre- and postsynaptic firing induces a lasting change in synaptic efficacy of VTA GABAergic synapses. We found that a Hebbian form of STDP including long-term potentiation (LTP) and long-term depression (LTD) can be induced at GABAergic synapses onto VTA DA neurons and relies on the precise temporal order of pre- and postsynaptic spiking. Importantly, GABAergic STDP is heterosynaptic (NMDA receptor dependent): triggered by correlated activities of the presynaptic glutamatergic input and postsynaptic DA cells. GABAergic STDP is postsynaptic and has an associative component since pre- or postsynaptic spiking per se did not induce STDP. STDP of GABAergic synapses in the VTA provides physiologically relevant forms of inhibitory plasticity that may underlie natural reinforcement of reward-related behaviours. Moreover, this form of inhibitory plasticity may mediate some of the reinforcing, aversive and addictive properties of drugs of abuse.


GABAergic Neurons/physiology , Long-Term Potentiation , Long-Term Synaptic Depression , Synapses/physiology , Ventral Tegmental Area/physiology , Animals , GABAergic Neurons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synaptic Potentials , Ventral Tegmental Area/cytology
...