Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Nat Commun ; 15(1): 2042, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448402

Responsive chiral systems have attracted considerable attention, given their potential for diverse applications in biology, optoelectronics, photonics, and related fields. Here we show the reversible chirality inversion of an AuAgx-cysteine (AuAgx-cys) coordination polymer (CP) by pH changes. The polymer can be obtained by mixing HAuCl4 and AgNO3 with L-cysteine (or D-cysteine) in appropriate proportions in H2O (or other surfactant solutions). Circular dichroism (CD) spectrum is used to record the strong optical activity of the AuAg0.06-L-cys enantiomer (denoted as L0.06), which can be switched to that of the corresponding D0.06 enantiomer by alkalization (final dispersion pH > 13) and can be switched back after neutralization (final dispersion pH <8). Multiple structural changes at different pH values (≈9.6, ≈13) are observed through UV-Vis and CD spectral measurements, as well as other controlled experiments. Exploration of the CP synthesis kinetics suggests that the covalent bond formation is rapid and then the conformation of the CP materials would continuously evolve. The reaction stoichiometry investigation shows that the formation of CP materials with chirality inversion behavior requires the balancing between different coordination and polymerization processes. This study provides insights into the potential of inorganic stereochemistry in developing promising functional materials.

2.
Adv Sci (Weinh) ; : e2307921, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38477181

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1  K-1 ) compared to the transverse direction (24 mW m-1  K-1 ). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2  g-1 ) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.

3.
J Control Release ; 368: 566-579, 2024 Apr.
Article En | MEDLINE | ID: mdl-38438093

Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a plethora of physicochemical characterisation data and clinical studies are available for these products, evidence-based correlation between physicochemical properties of iron-carbohydrate complexes and clinical outcome has not fully been elucidated yet. Studies on other metal oxide NPs suggest that early interactions between NPs and blood upon IV injection are key to understanding how differences in physicochemical characteristics of iron-carbohydrate complexes cause variance in clinical outcomes. We therefore investigated the core-ligand structure of two clinically relevant iron-carbohydrate complexes, iron sucrose (IS) and ferric carboxymaltose (FCM), and their interactions with two structurally different human plasma proteins, human serum albumin (HSA) and fibrinogen, using a combination of cryo-scanning transmission electron microscopy (cryo-STEM), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). Using this orthogonal approach, we defined the nano-structure, individual building blocks and surface morphology for IS and FCM. Importantly, we revealed significant differences in the surface morphology of the iron-carbohydrate complexes. FCM shows a localised carbohydrate shell around its core, in contrast to IS, which is characterised by a diffuse and dynamic layer of carbohydrate ligand surrounding its core. We hypothesised that such differences in carbohydrate morphology determine the interaction between iron-carbohydrate complexes and proteins and therefore investigated the NPs in the presence of HSA and fibrinogen. Intriguingly, IS showed significant interaction with HSA and fibrinogen, forming NP-protein clusters, while FCM only showed significant interaction with fibrinogen. We postulate that these differences could influence bio-response of the two formulations and their clinical outcome. In conclusion, our study provides orthogonal characterisation of two clinically relevant iron-carbohydrate complexes and first hints at their interaction behaviour with proteins in the human bloodstream, setting a prerequisite towards complete understanding of the correlation between physicochemical properties and clinical outcome.


Anemia, Iron-Deficiency , Maltose/analogs & derivatives , Metal Nanoparticles , Humans , Iron/chemistry , Scattering, Small Angle , Ligands , X-Ray Diffraction , Ferric Compounds , Ferric Oxide, Saccharated/therapeutic use , Anemia, Iron-Deficiency/drug therapy , Metal Nanoparticles/chemistry , Fibrinogen
4.
ACS Nano ; 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38320982

The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.

5.
J Mater Chem B ; 11(36): 8732-8753, 2023 09 20.
Article En | MEDLINE | ID: mdl-37655519

Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as T1 contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles. In view of MRI application, the surface properties including the polarity of MnO are crucial factors determining their relaxation rate and thus the MRI efficiency. Two novel hybrid constructs consisting of LLCNPs loaded with hydrophobic MnO-oleate and hydrophilic MnO-DMSA NPs were prepared. These nanosystems were studied in terms of their physico-chemical properties, positive T1 contrast enhancement properties (in vitro and in vivo) and biological safety. LLCNPs@MnO-oleate and LLCNPs@MnO-DMSA hybrids exhibited a heterogeneous phase composition, however with differences in the inner periodic arrangement and structural parameters, as well as in the preferable localization of MnO NPs within the LLCNPs. Also, these hybrids differed in terms of particle size-related parameters and colloidal stability, which was found to be strongly dependent on the addition of differently functionalized MnO NPs. Embedding both types of MnO NPs into LLCNPs resulted in high relaxivity parameters, in comparison to bare MnO-DMSA NPs and also commercially developed CAs (e.g. Dotarem and Teslascan). Further biosafety studies revealed that cell internalization pathways were dependent on the prepared hybrid type, while viability, effects on the mitochondria membrane potential and cytoskeletal networks were rather related to the susceptibility of the particular cell line. The high relaxation rates achieved with the developed hybrid LLCNPs@MnO enable them to be possibly used as novel and biologically safe MRI T1-enhancing CAs in in vivo imaging.


Contrast Media , Oxides , Magnetic Resonance Imaging , Lipids
6.
Acta Biomater ; 169: 138-154, 2023 10 01.
Article En | MEDLINE | ID: mdl-37517619

Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context and correlation to hemodynamic and biomechanical indicators, hence providing design cues for improved bioprosthetic valve alternatives.


Bioprosthesis , Calcinosis , Heart Failure , Heart Valve Prosthesis , Animals , Cattle , Heart Valves , Collagen , Aortic Valve/surgery
7.
J Phys Chem Lett ; 14(19): 4517-4523, 2023 May 18.
Article En | MEDLINE | ID: mdl-37159248

For more than 150 years, our understanding of solid-phase mineral formation from dissolved constituent ions in aqueous environments has been dominated by classical nucleation theory (CNT). However, an alternative paradigm known as non-classical nucleation theory (NCNT), characterized by the existence of thermodynamically stable and highly hydrated ionic "prenucleation clusters" (PNCs), is increasingly invoked to explain mineral nucleation, including the formation of calcium carbonate (CaCO3) minerals in aqueous conditions, which is important in a wide range of geological and biological systems. While the existence and role of PNCs in aqueous nucleation processes remain hotly debated, we show, using in situ small-angle X-ray scattering (SAXS), that nanometer-sized clusters are present in aqueous CaCO3 solutions ranging from thermodynamically under- to supersaturated conditions regarding all known mineral phases, thus demonstrating that CaCO3 mineral formation cannot be explained solely by CNT under the conditions examined.

8.
Nanoscale Adv ; 5(8): 2261-2270, 2023 Apr 11.
Article En | MEDLINE | ID: mdl-37056625

Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 °C than at 25 °C regardless of the ethylene content. Additionally, at 25 °C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.

9.
ACS Nano ; 17(4): 3737-3749, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36749603

Transparent conductive electrodes (TCEs) with a high figure of merit (FOMe, defined as the ratio of transmittance to sheet resistance) are crucial for transparent electronic devices, such as touch screens, micro-supercapacitors, and transparent antennas. Two-dimensional (2D) titanium carbide (Ti3C2Tx), known as MXene, possesses metallic conductivity and a hydrophilic surface, suggesting dispersion stability of MXenes in aqueous media allowing the fabrication of MXene-based TCEs by solution processing. However, achieving high FOMe MXene TCEs has been hindered mainly due to the low intrinsic conductivity caused by percolation problems. Here, we have managed to resolve these problems by (1) using large-sized Ti3C2Tx flakes (∼12.2 µm) to reduce interflake resistance and (2) constructing compact microstructures by blade coating. Consequently, excellent optoelectronic properties have been achieved in the blade-coated Ti3C2Tx films, i.e., a DC conductivity of 19 325 S cm-1 at transmittances of 83.4% (≈6.7 nm) was obtained. We also demonstrate the applications of Ti3C2Tx TCEs in transparent Joule heaters and the field of supercapacitors, showing an outstanding Joule heating effect and high rate response, respectively, suggesting enormous potential applications in flexible, transparent electronic devices.

10.
ACS Biomater Sci Eng ; 9(4): 1815-1822, 2023 04 10.
Article En | MEDLINE | ID: mdl-34962771

A novel approach for the production of a bioinspired dentine replacement material is introduced. An apatite-gelatin nanocomposite material was cross-linked with various cross-linkers. These nanocomposites have a high resemblance to mammalian dentine regarding its composition and properties. A precipitation reaction was used to produce apatite-gelatin nanocomposites as starting materials. Cross-linking of the gelatin has to be performed to produce dentine-like and thus tough and robust apatite-gelatin nanocomposites. Therefore, the efficacy of various protein cross-linkers was tested, and the resulting materials were characterized by scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and EXAFS as well as CHNS analysis and tested for their mechanical performance using Vickers hardness measurements as well as for their dissolution stability in EDTA. Especially glutaraldehyde, proanthocyanidins, and transglutaminase gave promising results with hardness values of up to 63 HV0.2. To further improve the material properties, we combined the effective cross-linker transglutaminase with casein, which led to an improved interconnection between the single nanocomposite platelets. By doing so, a cross-linked composite was obtained, which shows even higher hardness values than does human dentine, at 76 HV0.2. The combination of apatite-gelatin nanocomposites with an effective cross-linker resulted in a bioinspired material with composition and properties close to those of human dentine.


Gelatin , Nanocomposites , Humans , Animals , Apatites , Transglutaminases , Dentin , Mammals
11.
Nat Commun ; 13(1): 5088, 2022 08 29.
Article En | MEDLINE | ID: mdl-36038532

Amorphous calcium carbonate plays a key role as transient precursor in the early stages of biogenic calcium carbonate formation in nature. However, due to its instability in aqueous solution, there is still rare success to utilize amorphous calcium carbonate in biomedicine. Here, we report the mutual effect between paramagnetic gadolinium ions and amorphous calcium carbonate, resulting in ultrafine paramagnetic amorphous carbonate nanoclusters in the presence of both gadolinium occluded highly hydrated carbonate-like environment and poly(acrylic acid). Gadolinium is confirmed to enhance the water content in amorphous calcium carbonate, and the high water content of amorphous carbonate nanoclusters contributes to the much enhanced magnetic resonance imaging contrast efficiency compared with commercially available gadolinium-based contrast agents. Furthermore, the enhanced T1 weighted magnetic resonance imaging performance and biocompatibility of amorphous carbonate nanoclusters are further evaluated in various animals including rat, rabbit and beagle dog, in combination with promising safety in vivo. Overall, exceptionally facile mass-productive amorphous carbonate nanoclusters exhibit superb imaging performance and impressive stability, which provides a promising strategy to design magnetic resonance contrast agent.


Contrast Media , Gadolinium , Animals , Calcium Carbonate , Dogs , Ions , Magnetic Resonance Imaging , Rabbits , Rats , Water
12.
Pharmaceutics ; 14(7)2022 Jul 07.
Article En | MEDLINE | ID: mdl-35890321

Previous investigations conducted on a liposomal formulation for a SARS-CoV-2 DNA vaccine manufactured using the thin-film layer rehydration method showed promising immunogenicity results in mice. The adaptation of the liposomal formulation to a scalable and reproducible method of manufacture is necessary to continue the investigation of this vaccine candidate. Microfluidics manufacture shows high potential in method translation. The physicochemical characterization of the blank liposomes produced by thin-film layer rehydration or microfluidics were shown to be comparable. However, a difference in lipid nanostructure in the bilayer resulted in a significant difference in the hydration of the thin-film liposomes, ultimately altering their complexation behavior. A study on the complexation of liposomes with the DNA vaccine at various N/P ratios showed different sizes and Zeta-potential values between the two formulations. This difference in the complexation behavior resulted in distinct immunogenicity profiles in mice. The thin-film layer rehydration-manufactured liposomes induced a significantly higher response compared to the microfluidics-manufactured samples. The nanostructural analysis of the two samples revealed the critical importance of understanding the differences between the two formulations that resulted in the different immunogenicity in mice.

13.
ACS Appl Mater Interfaces ; 14(14): 16703-16717, 2022 Apr 13.
Article En | MEDLINE | ID: mdl-35377597

Photoresponsive soft liquid crystalline elastomers (LCEs) transform light's energy into dynamic shape changes and are considered promising candidates for production of soft robotic or muscle-like devices. 3D printing allows access to elaborated geometries as well as control of the photoactuated movements; however, this development is still in its infancy and only a limited choice of LCE is yet available. Herein, we propose to introduce biocompatible and sustainable cellulose nanocrystals (CNC) into an LCE in order to facilitate the printing process by direct ink writing (DIW) and to benefit from the anisotropic mechanical properties resulting from the extrusion-induced alignment of such nanoparticles. After a first printing step where the rheological influence of CNC allows the production of self-standing structures, a doping process introduces the azobenzene photoswitches in the composite, conferring photomechanical behaviors to the printed material. This approach results in soft composites, with an elastic modulus around 20-30 MPa, that present fully reversible photosoftening of 35% and photomechanical actuation occurring less than 3 s after illumination. The presence of CNC as reinforcement particles allows precise tailoring of mechanical properties, rendering such phototriggered materials suitable candidates for the production of actuators and 3D structures with particular and dynamic load cases.

14.
Faraday Discuss ; 235(0): 36-55, 2022 07 14.
Article En | MEDLINE | ID: mdl-35388817

In experimental studies, heavy water (D2O) is employed, e.g., so as to shift the spectroscopic solvent background, but any potential effects of this solvent exchange on reaction pathways are often neglected. While the important role of light water (H2O) during the early stages of calcium carbonate formation has been realized, studies into the actual effects of aqueous solvent exchanges are scarce. Here, we present a combined computational and experimental approach to start to fill this gap. We extended a suitable force field for molecular dynamics (MD) simulations. Experimentally, we utilised advanced titration assays and time-resolved attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. We find distinct effects in various mixtures of the two aqueous solvents, and in pure H2O or D2O. Disagreements between the computational results and experimental data regarding the stabilities of ion associates might be due to the unexplored role of HDO, or an unprobed complex phase behaviour of the solvent mixtures in the simulations. Altogether, however, our data suggest that calcium carbonate formation might proceed "more classically" in D2O. Also, there are indications for the formation of new structures in amorphous and crystalline calcium carbonates. There is huge potential towards further improving the understanding of mineralization mechanisms by studying solvent-mediated isotope effects, also beyond calcium carbonate. Last, it must be appreciated that H2O and D2O have significant, distinct effects on mineralization mechanisms, and that care has to be taken when experimental data from D2O studies are used, e.g., for the development of H2O-based computer models.


Calcium Carbonate , Water , Deuterium Oxide/chemistry , Isotopes , Solvents , Water/chemistry
15.
Chimia (Aarau) ; 76(3): 229-235, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-38069737

The rising interest in designing fibres via spinning techniques combining the properties of various polymeric materials into advanced functionalised materials is directed towards targeted biomedical applications such as drug delivery, wearable sensors or tissue engineering. Understanding how these functional polymers exhibit multiscale structures ranging from the molecular level to nano-, micro-and millimetre scale is a key prerequisite for their challenging applications that can be addressed by a non-destructive X-ray based analytical approach. X-ray multimodalities combining X-ray imaging, scattering and diffraction allow the study of morphology, molecular structure, and the analysis of nano-domain size and shape, crystallinity and preferential orientation in 3D arrangements. The incorporation of X-ray analytics in the design process of polymeric fibers via their nanostructure under non-ambient conditions (i.e. temperature, mechanical load, humidity…) allows for efficient optimization of the fabrication process as well as quality control along the product lifetime under operating environmental conditions. Here, we demonstrate the successful collaboration between the laboratory of Biomimetic Textiles and Membranes and the Center of X-ray Analytics at Empa for the design, characterisation and optimisation of advanced functionalised polymeric fibrous material systems.

16.
Angew Chem Int Ed Engl ; 61(2): e202112461, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-34669241

Binary mesocrystals offer the combination of nanocrystal properties in an ordered superstructure. Here, we demonstrate the simultaneous self-assembly of platinum and iron oxide nanocubes into micrometer-sized 3D mesocrystals using the gas-phase diffusion technique. By the addition of minor amounts of a secondary particle type tailored to nearly identical size, shape and surface chemistry, we were able to promote a random incorporation of foreign particles into a self-assembling host lattice. The random distribution of the binary particle types on the surface and within its bulk has been visualized using advanced transmission and scanning electron microscopy techniques. The 20-40 µm sized binary mesocrystals have been further characterized through wide and small angle scattering techniques to reveal a long-range ordering on the atomic scale throughout the crystal while showing clear evidence that the material consists of individual building blocks. Through careful adjustments of the crystallization parameters, we could further obtain a reverse superstructure, where incorporated particles and host lattice switch roles.

17.
Angew Chem Int Ed Engl ; 59(15): 6155-6159, 2020 04 06.
Article En | MEDLINE | ID: mdl-31943581

Liquid-liquid phase separation (LLPS) is an intermediate step during the precipitation of calcium carbonate, and is assumed to play a key role in biomineralization processes. Here, we have developed a model where ion association thermodynamics in homogeneous phases determine the liquid-liquid miscibility gap of the aqueous calcium carbonate system, verified experimentally using potentiometric titrations, and kinetic studies based on stopped-flow ATR-FTIR spectroscopy. The proposed mechanism explains the variable solubilities of solid amorphous calcium carbonates, reconciling previously inconsistent literature values. Accounting for liquid-liquid amorphous polymorphism, the model also provides clues to the mechanism of polymorph selection. It is general and should be tested for systems other than calcium carbonate to provide a new perspective on the physical chemistry of LLPS mechanisms based on stable prenucleation clusters rather than un-/metastable fluctuations in biomineralization, and beyond.

...