Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Antibiotics (Basel) ; 11(12)2022 Dec 16.
Article En | MEDLINE | ID: mdl-36551489

The diffusion of antibiotic-resistant, Gram-negative, opportunistic pathogens, an increasingly important global public health issue, causes a significant socioeconomic burden. Acinetobacter baumannii isolates, despite causing a lower number of infections than Enterobacterales, often show multidrug-resistant phenotypes. Carbapenem resistance is also rather common, prompting the WHO to include carbapenem-resistant A. baumannii as a "critical priority" for the discovery and development of new antibacterial agents. In a previous work, we identified several series of compounds showing either direct-acting or synergistic activity against relevant Gram-negative species, including A. baumannii. Among these, two pyrazole compounds, despite being devoid of any direct-acting activity, showed remarkable synergistic activity in the presence of a subinhibitory concentration of colistin on K. pneumoniae and A. baumannii and served as a starting point for the synthesis of new analogues. In this work, a new series of 47 pyrazole compounds was synthesized. Some compounds showed significant direct-acting antibacterial activity on Gram-positive organisms. Furthermore, an evaluation of their activity as potential antibiotic adjuvants allowed for the identification of two highly active compounds on MDR Acinetobacter baumannii, including colistin-resistant isolates. This work confirms the interest in pyrazole amides as a starting point for the optimization of synergistic antibacterial compounds active on antibiotic-resistant, Gram-negative pathogens.

2.
J Med Chem ; 62(17): 8178-8193, 2019 09 12.
Article En | MEDLINE | ID: mdl-31386361

ProTides comprise an important class of prodrugs currently marketed and developed as antiviral and anticancer therapies. The ProTide technology employs phosphate masking groups capable of providing more favorable druglike properties and an intracellular activation mechanism for enzyme-mediated release of a nucleoside monophosphate. Herein, we describe the application of phosphoramidate chemistry to 1,3,4-O-acetylated N-acetylmannosamine (Ac3ManNAc) to deliver ManNAc-6-phosphate (ManNAc-6-P), a critical intermediate in sialic acid biosynthesis. Sialic acid deficiency is a hallmark of GNE myopathy, a rare congenital disorder of glycosylation (CDG) caused by mutations in GNE that limit the production of ManNAc-6-P. Synthetic methods were developed to provide a library of Ac3ManNAc-6-phosphoramidates that were evaluated in a series of studies for their potential as a treatment for GNE myopathy. Prodrug 12b showed rapid activation in a carboxylesterase (CPY) enzymatic assay and favorable ADME properties, while also being more effective than ManNAc at increasing sialic acid levels in GNE-deficient cell lines. These results provide a potential platform to address substrate deficiencies in GNE myopathy and other CDGs.


Distal Myopathies/drug therapy , Drug Delivery Systems , Hexosamines/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Prodrugs/pharmacology , Sugar Phosphates/pharmacology , Animals , CHO Cells , Caco-2 Cells , Cell Survival/drug effects , Cells, Cultured , Cricetulus , Distal Myopathies/metabolism , Distal Myopathies/pathology , Dose-Response Relationship, Drug , Hexosamines/chemical synthesis , Hexosamines/chemistry , Humans , Molecular Structure , N-Acetylneuraminic Acid/analysis , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship , Sugar Phosphates/chemical synthesis , Sugar Phosphates/chemistry
...