Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 255: 119175, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38768886

RESUMEN

As a sink and a source of chemicals, house dust represents a relevant medium to assess indoor exposure to metal(loid)s via incidental ingestion or inhalation. However, nationally representative indoor data are scarce. Results from the Canadian House Dust Study (CHDS, 2007-2010; n = 1025) provide nationally representative mean, median and 95th percentile concentrations for 38 elements in typical urban house dust, along with their gastric bioaccessibility. Total concentrations (median/95th percentile) of carcinogenic metal(loid)s in Canadian house dust (µg g-1) are as follows: As (9.0/40), Be (0.4/0.9), Cd (3.5/17), Co (5.6/19), Cr (99/214), Ni (62/322) and Pb (100/760). Total As and Pb concentrations in house dust exceed residential soil guidelines for the protection of human health in about one-third of Canadian homes. Percent bioaccessibilities (median) are: Cd (65%) > Pb (63%) > Be âˆ¼ Ni (36%) > Co (35%) > As (20%) > Cr (15%). Lead, Cd and Co concentrations are significantly greater in older houses (< 1976). Data from two pilot studies (n = 66 + 51) further demonstrate the distinct geochemistry of house dust compared to soils, notably enrichment of carcinogenic metal(loid)s and their increased bioaccessibility. These results provide essential baseline values to refine risk assessment and inform on health risk at contaminated sites.


Asunto(s)
Polvo , Contaminantes del Suelo , Polvo/análisis , Humanos , Canadá , Contaminantes del Suelo/análisis , Disponibilidad Biológica , Monitoreo del Ambiente/métodos , Mucosa Gástrica/metabolismo , Contaminación del Aire Interior/análisis , Carcinógenos/análisis , Suelo/química , Vivienda , Metales/análisis
2.
Sci Total Environ ; 924: 171720, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38490431

RESUMEN

Resuspension of road dust is a major source of airborne particulate matter (PM) in urban environments. Inhalation of ultrafine particles (UFP; < 0.1 µm) represents a health concern due to their ability to reach the alveoli and be translocated into the blood stream. It is therefore important to characterize chemical properties of UFPs associated with vehicle emissions. We investigated the capability of Single-Particle ICP-MS (SP-ICP-MS) to quantify key metal(loid)s in nanoparticles (NPs; < 0.1 µm) isolated from road dust collected in Toronto, Canada. Water extraction was performed to separate the <1-µm fraction from two different road dust samples (local road vs. arterial road) and a multi-element SP-ICP-MS analysis was then conducted on the samples' supernatants. Based on the particle number concentrations obtained for both supernatants, the metal(loid)-containing NPs could be grouped in the following categories: high (Cu and Zn, > 1.3 × 1011 particles/L), medium (V, Cr, Ba, Pb, Sb, Ce, La), low (As, Co, Ni, < 4.6 × 109 particles/L). The limit of detection for particle number concentration was below 5.5 × 106 particles/L for most elements, except for Cu, Co, Ni, Cr, and V (between 0.9 and 7.7 × 107 particles/L). The results demonstrate that road dust contains a wide range of readily mobilizable metal(loid)-bearing NPs and that NP numbers may vary as a function of road type. These findings have important implications for human health risk assessments in urban areas. Further research is needed, however, to comprehensively assess the NP content of road dust as influenced by various factors, including traffic volume and speed, fleet composition, and street sweeping frequency. The described method can quickly characterize multiple isotopes per sample in complex matrices, and offers the advantage of rapid sample scanning for the identification of NPs containing potentially toxic transition metal(loid)s at a low detection limit.


Asunto(s)
Metaloides , Metales Pesados , Oligoelementos , Humanos , Polvo/análisis , Monitoreo del Ambiente/métodos , Metales/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis , Oligoelementos/análisis , Medición de Riesgo , Metales Pesados/análisis , Ciudades , Metaloides/análisis
3.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203705

RESUMEN

The impact of solubility on the toxicity of metal oxide nanoparticles (MONPs) requires further exploration to ascertain the impact of the dissolved and particulate species on response. In this study, FE1 mouse lung epithelial cells were exposed for 2-48 h to 4 MONPs of varying solubility: zinc oxide, nickel oxide, aluminum oxide, and titanium dioxide, in addition to microparticle analogues and metal chloride equivalents. Previously published data from FE1 cells exposed for 2-48 h to copper oxide and copper chloride were examined in the context of exposures in the present study. Viability was assessed using Trypan Blue staining and transcriptomic responses via microarray analysis. Results indicate material solubility is not the sole property governing MONP toxicity. Transcriptional signaling through the 'HIF-1α Signaling' pathway describes the response to hypoxia, which also includes genes associated with processes such as oxidative stress and unfolded protein responses and represents a conserved response across all MONPs tested. The number of differentially expressed genes (DEGs) in this pathway correlated with apical toxicity, and a panel of the top ten ranked DEGs was constructed (Hmox1, Hspa1a, Hspa1b, Mmp10, Adm, Serpine1, Slc2a1, Egln1, Rasd1, Hk2), highlighting mechanistic differences among tested MONPs. The HIF-1α pathway is proposed as a biomarker of MONP exposure and toxicity that can help prioritize MONPs for further evaluation and guide specific testing strategies.


Asunto(s)
Cobre , Nanopartículas del Metal , Animales , Ratones , Cobre/toxicidad , Óxidos/toxicidad , Toxicogenética , Cloruros , Nanopartículas del Metal/toxicidad
4.
Nanomaterials (Basel) ; 12(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683698

RESUMEN

Metal oxide nanomaterials (MONMs) are among the most highly utilized classes of nanomaterials worldwide, though their potential to induce DNA damage in living organisms is known. High-throughput in vitro assays have the potential to greatly expedite analysis and understanding of MONM induced toxicity while minimizing the overall use of animals. In this study, the high-throughput CometChip assay was used to assess the in vitro genotoxic potential of pristine copper oxide (CuO), zinc oxide (ZnO), and titanium dioxide (TiO2) MONMs and microparticles (MPs), as well as five coated/surface-modified TiO2 NPs and zinc (II) chloride (ZnCl2) and copper (II) chloride (CuCl2) after 2-4 h of exposure. The CuO NPs, ZnO NPs and MPs, and ZnCl2 exposures induced dose- and time-dependent increases in DNA damage at both timepoints. TiO2 NPs surface coated with silica or silica-alumina and one pristine TiO2 NP of rutile crystal structure also induced subtle dose-dependent DNA damage. Concentration modelling at both post-exposure timepoints highlighted the contribution of the dissolved species to the response of ZnO, and the role of the nanoparticle fraction for CuO mediated genotoxicity, showing the differential impact that particle and dissolved fractions can have on genotoxicity induced by MONMs. The results imply that solubility alone may be insufficient to explain the biological behaviour of MONMs.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615936

RESUMEN

Toxicological effects of metal-oxide-engineered nanomaterials (ENMs) are closely related to their distinct physical-chemical properties, especially solubility and surface reactivity. The present study used five metal-oxide ENMs (ZnO, MnO2, CeO2, Al2O3, and Fe2O3) to investigate how various biologically relevant media influenced dissolution behaviour. In both water and cell culture medium (DMEM), the metal-oxide ENMs were more soluble than their bulk analogues, with the exception that bulk-MnO2 was slightly more soluble in water than nano-MnO2 and Fe2O3 displayed negligible solubility across all tested media (regardless of particle size). Lowering the initial concentration (10 mg/L vs. 100 mg/L) significantly increased the relative solubility (% of total concentration) of nano-ZnO and nano-MnO2 in both water and DMEM. Nano-Al2O3 and nano-CeO2 were impacted differently by the two media (significantly higher % solubility at 10 mg/L in DMEM vs. water). Further evaluation of simulated interstitial lung fluid (Gamble's solution) and phagolysosomal simulant fluid (PSF) showed that the selection of aqueous media significantly affected agglomeration and dissolution behaviour. The solubility of all investigated ENMs was significantly higher in DMEM (pH = 7.4) compared to Gamble's (pH 7.4), attributable to the presence of amino acids and proteins in DMEM. All ENMs showed low solubility in Gamble's (pH = 7.4) compared with PSF (pH = 4.5), attributable to the difference in pH. These observations are relevant to nanotoxicology as increased nanomaterial solubility also affects toxicity. The results demonstrated that, for the purpose of grouping and read-across efforts, the dissolution behaviour of metal-oxide ENMs should be evaluated using aqueous media representative of the exposure pathway being considered.

6.
Nanotoxicology ; 15(3): 380-399, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33507836

RESUMEN

The in vitro and in vivo toxicity of copper oxide nanoparticles (CuO NPs) is attributed to both particle and dissolved copper ion species. However, a clear understanding of (1) the specific cellular responses that are modulated by the two species and (2) the temporal dynamics in toxicity, as the proportional amount of particulate and ionic forms change over time, is lacking. In the current study, in vitro responses to microparticulate CuO (CuO MPs), CuO NPs, and dissolved Cu2+ were characterized in order to elucidate particle and ion-induced kinetic effects. Particle dissolution experiments were carried out in a relevant cell culture medium, using CuO NPs and MPs. Mouse lung epithelial cells were exposed for 2-48 h with 1-25 µg/mL CuO MPs, CuO NPs, or 7 and 54 µg/mL CuCl2. Cellular viability and genome-wide transcriptional responses were assessed. Dose and time-dependent cytotoxicity were observed in CuO NP exposed cells, which was delayed and subtle in CuCl2 and not observed in CuO MPs treated cells. Analyses of differentially expressed genes and associated pathway perturbations showed that dissolved ions released by CuO NPs in the extracellular medium are insufficient to account for the observed potency and cytotoxicity. Further organization of gene expression results in an Adverse Outcome Pathway (AOP) framework revealed a series of key events potentially involved in CuO NPs toxicity. The AOP is applicable to toxicity induced by metal oxide nanoparticles of varying solubility, and thus, can facilitate the development of in vitro alternative strategies to screen their toxicity.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Cobre/farmacología , Pulmón/efectos de los fármacos , Animales , Células Epiteliales/efectos de los fármacos , Cinética , Pulmón/química , Pulmón/citología , Nanopartículas del Metal , Ratones , Óxidos/metabolismo , Solubilidad
7.
J Anal Methods Chem ; 2016: 3834292, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27974992

RESUMEN

Residual metal impurities in carbon nanotubes (CNTs) provide a means to distinguish CNT from non-CNT sources of elemental carbon in environmental samples. A practical and cost-effective analytical approach is needed to support routine surface monitoring of CNT metal tracers using wipe sampling. Wipe sampling for CNT metal tracers is considered a qualitative indicator of the presence of CNTs, not a quantitative exposure metric. In this study, two digestion approaches (microwave-assisted nitric acid/H2O2 digestion and ultrasonic nitric/HF acid digestion) in conjunction with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) determination were evaluated for their ability to extract metal impurities from CNT particles captured on wipe substrates. Aliquots of different carbon nanotubes (including NIST 2483 single-wall CNT) with and without GhostWipes™ (ASTM E-1792 compliant) were used to compare the performance of the digestion methods. The microwave digestion method accommodated the bulky wipe sample and also eliminated potential ICP-MS signal interferences related to incomplete digestion. Although quantitative recoveries requiring lengthy multistep digestion protocols may be necessary in other applications, the near-total recoveries achieved in the present study for CNT catalyst elements were adequate for identifying surface contamination of CNTs in the workplace using wipe sampling.

8.
Environ Sci Technol ; 49(21): 12888-96, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26451679

RESUMEN

This study investigated three area sampling approaches for using metal impurities in carbon nanotubes (CNTs) to identify CNT releases in workplace environments: air concentrations (µg/m3), surface loadings (µg/cm2), and passive deposition rates (µg/m2/h). Correlations between metal impurities and CNTs were evaluated by collecting simultaneous colocated area samples for thermal-optical analysis (for CNTs) and ICP-MS analysis (for metals) in a CNT manufacturing facility. CNTs correlated strongly with Co (residual catalyst) and Ni (impurity) in floor surface loadings, and with Co in passive deposition samples. Interpretation of elemental ratios (Co/Fe) assisted in distinguishing among CNT and non-CNT sources of contamination. Stable isotopes of Pb impurities were useful for identifying aerosolized CNTs in the workplace environment of a downstream user, as CNTs from different manufacturers each had distinctive Pb isotope signatures. Pb isotopes were not useful for identifying CNT releases within a CNT manufacturing environment, however, because the CNT signature reflected the indoor background signature. CNT manufacturing companies and downstream users of CNTs will benefit from the availability of alternative and complementary strategies for identifying the presence/absence of CNTs in the workplace and for monitoring the effectiveness of control measures.


Asunto(s)
Contaminación del Aire Interior/análisis , Nanotubos de Carbono/análisis , Lugar de Trabajo , Aerosoles/análisis , Isótopos/análisis , Plomo/análisis , Espectrometría de Masas/métodos , Metales/análisis , Nanotecnología/métodos
9.
Int J Biometeorol ; 56(4): 605-19, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21597936

RESUMEN

The environmental changes caused by climate change represent a significant challenge to human societies. One part of this challenge will be greater heat-related mortality. Populations in the northern hemisphere will experience temperature increases exceeding the global average, but whether this will increase or decrease total temperature-related mortality burdens is debated. Here, we use distributed lag modeling to characterize temperature-mortality relationships in 15 Canadian cities. Further, we examine historical trends in temperature variation across Canada. We then develop city-specific general linear models to estimate change in high- and low-temperature-related mortality using dynamically downscaled climate projections for four future periods centred on 2040, 2060 and 2080. We find that the minimum mortality temperature is frequently located at approximately the 75th percentile of the city's temperature distribution, and that Canadians currently experience greater and longer lasting risk from cold-related than heat-related mortality. Additionally, we find no evidence that temperature variation is increasing in Canada. However, the projected increased temperatures are sufficient to change the relative levels of heat- and cold-related mortality in some cities. While most temperature-related mortality will continue to be cold-related, our models predict that higher temperatures will increase the burden of annual temperature-related mortality in Hamilton, London, Montreal and Regina, but result in slight to moderate decreases in the burden of mortality in the other 11 cities investigated.


Asunto(s)
Cambio Climático , Modelos Teóricos , Mortalidad , Canadá , Ciudades , Humanos , Temperatura
10.
Sci Total Environ ; 409(5): 968-78, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21176945

RESUMEN

The activity of various anaerobic microbes, including sulfate reducers (SRB), iron reducers (FeRP) and methanogens (MPA) has been linked to mercury methylation in aquatic systems, although the relative importance of each microbial group in the overall process is poorly understood in natural sediments. The present study focused on the biogeochemical factors (i.e. the relative importance of various groups of anaerobic microbes (FeRP, SRB, and MPA) that affect net monomethylmercury (MMHg) formation in contaminated sediments of the St. Lawrence River (SRL) near Cornwall (Zone 1), Ontario, Canada. Methylation and demethylation potentials were measured separately by using isotope-enriched mercury species ((200)Hg(2+) and MM(199)Hg(+)) in sediment microcosms treated with specific microbial inhibitors. Sediments were sampled and incubated in the dark at room temperature in an anaerobic chamber for 96h. The potential methylation rate constants (K(m)) and demethylation rates (K(d)) were found to differ significantly between microcosms. The MPA-inhibited microcosm had the highest potential methylation rate constant (0.016d(-1)), whereas the two SRB-inhibited microcosms had comparable potential methylation rate constants (0.003d(-1) and 0.002d(-1), respectively). The inhibition of methanogens stimulated net methylation by inhibiting demethylationand by stimulating methylation along with SRB activity. The inhibition of both methanogens and SRB was found to enhance the iron reduction rates but did not completely stop MMHg production. The strong positive correlation between K(m) and Sulfate Reduction Rates (SRR) and between K(d) and Methane Production Rates (MPR) supports the involvement of SRB in Hg methylation and MPA in MMHg demethylation in the sediments. In contrast, the strong negative correlation between K(d) and Iron Reduction Rates (FeRR) shows that the increase in FeRR corresponds to a decrease in demethylation, indicating that iron reduction may influence net methylation in the SLR sediments by decreasing demethylation rather than favouring methylation.


Asunto(s)
Sedimentos Geológicos/química , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Ríos/química , Anaerobiosis , Bacterias Anaerobias/metabolismo , Biotransformación , Sedimentos Geológicos/microbiología , Fenómenos Geológicos , Mercurio/química , Mercurio/metabolismo , Metilación , Compuestos de Metilmercurio/química , Compuestos de Metilmercurio/metabolismo , Ontario , Ríos/microbiología
11.
Environ Toxicol Chem ; 29(6): 1256-62, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20821567

RESUMEN

Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection. The new TSE procedure bridges together two well-known methods, the acid-leaching and distillation-derivatization procedures, offering the advantages of artifact-free formation of the first, and low detection limits and the possibility of quantification of individual isotopes of mercury of the second. The modified procedure retains the derivatization, purge and trap, and gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS) detection steps from the distillation-derivatization procedure, and eliminates the distillation step, which is not only laborious but also expensive, due to the high cost of installation and time-consuming cleaning process. Major advantages of the TSE procedure proposed include the extraction and analysis of a large number of samples in a short time, excellent analyte recoveries, and the lack of artifact formation. Sediment certified reference materials (CRMs), BCR 580 and IAEA 405, were used to test the TSE procedure accuracy. Recoveries between 94 to 106% and 95 to 96% were obtained for CRMs and spiked samples (Milli-Q(R) water), respectively. Comparisons among thiosulfate extraction, distillation, and acid-leaching procedures have shown good agreement of methylmercury values.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Sedimentos Geológicos/química , Compuestos de Metilmercurio/análisis , Cromatografía de Gases y Espectrometría de Masas , Isótopos de Mercurio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...