Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Psychopharmacology (Berl) ; 241(4): 767-783, 2024 Apr.
Article En | MEDLINE | ID: mdl-38001266

RATIONALE: Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE: The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS: When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS: These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.


Cues , Guanfacine , Humans , Male , Female , Rats , Animals , Atomoxetine Hydrochloride/pharmacology , Guanfacine/pharmacology , Impulsive Behavior/physiology , Norepinephrine/pharmacology , Brain , Prefrontal Cortex , Decision Making , Choice Behavior
2.
Biol Psychiatry ; 95(3): 220-230, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37673411

BACKGROUND: Both psychostimulant use and engagement with probabilistic schedules of reward sensitize the mesocorticolimbic dopamine (DA) system. Such behaviors may act synergistically to explain the high comorbidity between stimulant use and gambling disorder. The salient audiovisual stimuli of modern electronic gambling may exacerbate the situation. METHODS: To probe these interactions, we sensitized ventral tegmental area DA neurons via chronic chemogenetic stimulation while rats (n = 134) learned a rat gambling task in the presence or absence of casino-like cues. The same rats then learned to self-administer cocaine. In a separate cohort (n = 25), we confirmed that our chemogenetic methods sensitized the locomotor response to cocaine and potentiated phasic excitability of ventral tegmental area DA neurons through in vivo electrophysiological recordings. RESULTS: In the absence of cues, sensitization promoted risk taking in both sexes. When rewards were cued, sensitization expedited the development of a risk-preferring phenotype in males while attenuating cue-induced risk taking in females. CONCLUSIONS: While these results provide further confirmation that ventral tegmental area DA neurons critically modulate risky decision making, they also reveal stark sex differences in the decisional impact that dopaminergic signals exert when winning outcomes are cued. As previously observed, risky decision making on the cued rat gambling task increased as both males and females learned to self-administer cocaine. The combination of DA sensitization and win-paired cues while gambling led to significantly greater cocaine taking, but these rats did not show any increase in risky choice as a result. Therefore, cocaine and heavily cued gambles may partially substitute for each other once the DA system has been rendered labile through sensitization, thereby compounding addiction risk across modalities.


Cocaine , Gambling , Humans , Rats , Male , Female , Animals , Cues , Dopaminergic Neurons , Cocaine/pharmacology , Dopamine , Ventral Tegmental Area , Decision Making/physiology
...