Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioinform ; 4: 1411935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132675

RESUMEN

Introduction: This work utilizes predictive modeling in drug discovery to unravel potential candidate genes from Escherichia coli that are implicated in antimicrobial resistance; we subsequently target the gidB, MacB, and KatG genes with some compounds from plants with reported antibacterial potentials. Method: The resistance genes and plasmids were identified from 10 whole-genome sequence datasets of E. coli; forty two plant compounds were selected, and their 3D structures were retrieved and optimized for docking. The 3D crystal structures of KatG, MacB, and gidB were retrieved and prepared for molecular docking, molecular dynamics simulations, and ADMET profiling. Result: Hesperidin showed the least binding energy (kcal/mol) against KatG (-9.3), MacB (-10.7), and gidB (-6.7); additionally, good pharmacokinetic profiles and structure-dynamics integrity with their respective protein complexes were observed. Conclusion: Although these findings suggest hesperidin as a potential inhibitor against MacB, gidB, and KatG in E. coli, further validations through in vitro and in vivo experiments are needed. This research is expected to provide an alternative avenue for addressing existing antimicrobial resistances associated with E. coli's MacB, gidB, and KatG.

2.
Bioorg Chem ; 145: 107228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422592

RESUMEN

In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteína Tirosina Quinasa CSK/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Familia-src Quinasas , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Pirazoles/química , Pirazoles/farmacología
3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139837

RESUMEN

Two bis-(imidazolium-vanillylidene)-(R,R)-diaminocyclohexane ligands (H2(VAN)2dach, H2L1,2) and their Pd(II) complexes (PdL1 and PdL2) were successfully synthesized and structurally characterized using microanalytical and spectral methods. Subsequently, to target the development of new effective and safe anti-breast cancer chemotherapeutic agents, these complexes were encapsulated by lipid nanoparticles (LNPs) to formulate (PdL1LNP and PdL2LNP), which are physicochemically and morphologically characterized. PdL1LNP and PdL2LNP significantly cause DNA fragmentation in MCF-7 cells, while trastuzumab has a 10% damaging activity. Additionally, the encapsulated Pd1,2LNPs complexes activated the apoptotic mechanisms through the upregulated P53 with p < 0.001 and p < 0.05, respectively. The apoptotic activity may be triggered through the activity mechanism of the Pd1,2LNPs in the inhibitory actions against the FGFR2/FGF2 axis on the gene level with p < 0.001 and the Her2/neu with p < 0.05 and p < 0.01. All these aspects have triggered the activity of the PdL1LNP and PdL2LNP to downregulate TGFß1 by p < 0.01 for both complexes. In conclusion, LNP-encapsulated Pd(II) complexes can be employed as anti-cancer drugs with additional benefits in regulating the signal mechanisms of the apoptotic mechanisms among breast cancer cells with chemotherapeutic-safe actions.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38004458

RESUMEN

CDK2 is a key player in cell cycle processes. It has a crucial role in the progression of various cancers. Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are two common cancers that affect humans worldwide. The available therapeutic options suffer from many drawbacks including high toxicity and decreased specificity. Therefore, there is a need for more effective and safer therapeutic agents. A series of new pyrazolo[3,4-d]pyrimidine analogs was designed, synthesized, and evaluated as anticancer agents against the CRC and HCC cells, HCT116, and HepG2, respectively. Pyrazolo[3,4-d]pyrimidinone derivatives bearing N5-2-(4-halophenyl) acetamide substituents were identified as the most potent amongst evaluated compounds. Further evaluation of CDK2 kinase inhibition of two potential cytotoxic compounds 4a and 4b confirmed their CDK2 inhibitory activity. Compound 4a was more potent than the reference roscovitine regarding the CDK2 inhibitory activity (IC50 values: 0.21 and 0.25 µM, respectively). In silico molecular docking provided insights into the molecular interactions of compounds 4a and 4b with important amino acids within the ATP-binding site of CDK2 (Ile10, Leu83, and Leu134). Overall, compounds 4a and 4b were identified as interesting CDK2 inhibitors eliciting antiproliferative activity against the CRC and HCC cells, HCT116 and HepG2, respectively, for future further investigations and development.

5.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834474

RESUMEN

Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Relación Estructura-Actividad , Receptores ErbB/metabolismo , Proliferación Celular , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Mutación , Antineoplásicos/farmacología , Antineoplásicos/química , Antimetabolitos/farmacología , Pirimidinas/farmacología , Pirimidinas/química , Estructura Molecular , Línea Celular Tumoral
6.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049742

RESUMEN

An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Variaciones en el Número de Copia de ADN , Pronóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Biomarcadores , Desarrollo de Medicamentos , Encéfalo/metabolismo
7.
J Med Virol ; 95(1): e28308, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372783

RESUMEN

COVID-19 is an acute respiratory illness caused by Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). The first case was reported in Africa on February 14, 2020 and has surged to 11 million as of July 2022, with 43% and 30% of cases in Southern and Northern Africa. Current epidemiological data demonstrate heterogeneity in transmission and patient outcomes in Africa. However, the burden of infectious diseases such as malaria creates a significant burden on public health resources that are dedicated to COVID-19 surveillance, testing, and vaccination access. Several control measures, such as the SHEF2 model, encompassed Africa's most effective preventive measure. With the help of international collaborations and partnerships, Africa's pandemic preparedness employs effective risk-management strategies to monitor patients at home and build the financial capacity and human resources needed to combat COVID-19 transmission. However, the lack of safe sanitation and inaccessible drinking water, coupled with the financial consequences of lockdowns, makes it challenging to prevent the transmission and contraction of COVID-19. The overwhelming burden on contact tracers due to an already strained healthcare system will hurt epidemiological tracing and swift counter-measures. With the rise in variants, African countries must adopt genomic surveillance and prioritize funding for biodiversity informatics.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Control de Enfermedades Transmisibles , África/epidemiología , Genómica
8.
Biomed Pharmacother ; 150: 113041, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658211

RESUMEN

BACKGROUND: Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE: Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS: This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS: In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION: The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enfermedades Pulmonares , Suplementos Dietéticos , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/farmacología , SARS-CoV-2
9.
Environ Sci Pollut Res Int ; 29(32): 47931-47941, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35543788

RESUMEN

Sentinel lymph node (SLN) sampling is important for evaluating the nodal stage of breast cancer when the axillary nodes are clinically free of metastasis. The intraoperative frozen section (IFS) of SLN is used for lymph node assessment. This meta-analysis aims to provide evidence about the diagnostic accuracy and the applicability of IFS of SLN in breast cancer patients. Data were collected by searching PubMed, Cochrane, Scopus, and Web of Science electronic databases for trials matching our eligibility criteria. The statistical analysis included the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and pooled studies' diagnostic odds ratio outcomes. The analyses were conducted using the Open Meta-analyst software. This meta-analysis pooled the results of 110 studies. The overall sensitivity of IFS for SLN metastasis was 74.7%; 95% CI [72.0, 77.2], P < 0.001. It was 31.4% 95% CI [25.2, 38.3], P < 0.001 for the micro-metastasis, and 90.2%; 95% CI [86.5, 93.0], P < 0.001 for the macro-metastasis. The overall specificity was 99.4%; 95% CI [99.2, 99.6], P < 0.001. The overall positive likelihood ratio was 121.4; 95% CI [87.9, 167.6], P < 0.001, and the overall negative likelihood ratio was 0.226; 95% CI [0.186, 0.274], P < 0.001. The overall diagnostic odds ratio of IFS for diagnosing SLN metastasis was 569.5; 95% CI [404.2, 802.4], P < 0.001. The intraoperative frozen section of SLN has good sensitivity for diagnosing breast cancer macro-metastasis. However, the sensitivity is low for micro-metastasis. The specificity is very satisfactory.


Asunto(s)
Neoplasias de la Mama , Ganglio Linfático Centinela , Neoplasias de la Mama/patología , Femenino , Secciones por Congelación , Humanos , Metástasis Linfática/patología , Ganglio Linfático Centinela/patología , Biopsia del Ganglio Linfático Centinela/métodos
10.
Materials (Basel) ; 15(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268907

RESUMEN

Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.

11.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35215302

RESUMEN

In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized pharmacological effects. In the past, biomaterials such as carbohydrates, due to their physicochemical properties, have been extensively used to manufacture microneedles (MNs). Due to their wide range of functional groups, carbohydrates enable the design and development of tunable properties and functionalities. In recent years, numerous microneedle products have emerged on the market, although much research needs to be undertaken to overcome the various challenges before the successful introduction of microneedles into the market. As a result, carbohydrate-based microarrays have a high potential to achieve a future step in sensing, drug delivery, and biologics restitution. In this review, a comprehensive overview of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose and starch is discussed systematically. It also discusses the various drug delivery strategies and mechanical properties of biomaterial-based MNs, the progress made so far in the clinical translation of carbohydrate-based MNs, and the promotional opportunities for their commercialization. In conclusion, the article summarizes the future perspectives of carbohydrate-based MNs, which are considered as the new class of topical drug delivery systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA