Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Open ; 13(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345430

RESUMEN

Automated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as Drosophila melanogaster, where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population. Here, we present efficient automated cell counting workflows capable of quantifying cells in the developing wing. Our workflows can count the total number of cells or count cells in clones labeled with a fluorescent nuclear marker in imaginal discs. Moreover, by training a machine-learning algorithm we have developed a workflow capable of segmenting and counting twin-spot labeled nuclei, a challenging problem requiring distinguishing heterozygous and homozygous cells in a background of regionally varying intensity. Our workflows could potentially be applied to any tissue with high cellular density, as they are structure-agnostic, and only require a nuclear label to segment and count cells.


Asunto(s)
Drosophila , Discos Imaginales , Animales , Drosophila melanogaster , Larva , Núcleo Celular
2.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37790459

RESUMEN

The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. "Would-be" winners that lack Fmi are unable to over-proliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.

3.
EMBO Rep ; 24(12): e56997, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37975164

RESUMEN

Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.


Asunto(s)
Proteínas de Drosophila , Proteínas de la Membrana , Animales , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
4.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808631

RESUMEN

Planar Cell Polarity (PCP) signaling polarizes epithelial cells in a plane orthogonal to their apical-basal axis. A core PCP signaling module both generates molecular asymmetry within cells and coordinates the direction of polarization between neighboring cells. Two subcomplexes of core proteins segregate to opposite sides of the cell, defining a polarity axis. Homodimers of the atypical cadherin Flamingo are thought to be the scaffold upon which these subcomplexes assemble and are required for intercellular polarity signaling. The central role for Flamingo homodimers in scaffolding and intercellular communication suggests that cells in which intercellular signaling via Flamingo is disabled should fail to polarize. We show that cells lacking Flamingo, or bearing a truncated Flamingo that cannot homodimerize do in fact polarize. Cell polarization requires both positive and negative feedback, and in a multicellular tissue, feedback might involve both intracellular and intercellular pathways. We identify positive and negative feedback pathways that operate cell autonomously to drive polarization.

5.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693429

RESUMEN

Convergent extension (CE) is a fundamental morphogenetic process where oriented cell behaviors lead to polarized extension of diverse tissues. In vertebrates, regulation of CE requires both non-canonical Wnt, its co-receptor Ror, and "core members" of the planar cell polarity (PCP) pathway. PCP was originally identified as a mechanism to coordinate the cellular polarity in the plane of static epithelium, where core proteins Frizzled (Fz)/ Dishevelled (Dvl) and Van Gogh-like (Vangl)/ Prickel (Pk) partition to opposing cell cortex. But how core PCP proteins interact with each other to mediate non-canonical Wnt/ Ror signaling during CE is not clear. We found previously that during CE, Vangl cell-autonomously recruits Dvl to the plasma membrane but simultaneously keeps Dvl inactive. In this study, we show that non-canonical Wnt induces Dvl to transition from Vangl to Fz. PK inhibits the transition, and functionally synergize with Vangl to suppress Dvl during CE. Conversely, Ror is required for the transition, and functionally antagonizes Vangl. Biochemically, Vangl interacts directly with both Ror and Dvl. Ror and Dvl do not bind directly, but can be cofractionated with Vangl. We propose that Pk assists Vangl to function as an unconventional adaptor that brings Dvl and Ror into a complex to serves two functions: 1) simultaneously preventing both Dvl and Ror from ectopically activating non-canonical Wnt signaling; and 2) relaying Dvl to Fz for signaling activation upon non-canonical Wnt induced dimerization of Fz and Ror.

6.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745534

RESUMEN

PCP signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of Protein Phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one Serine/Threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.

7.
J Cell Sci ; 136(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37505110

RESUMEN

Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.


Asunto(s)
Células Epiteliales , Vía de Señalización Wnt , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Ratones Noqueados , Proteína Wnt4/metabolismo
8.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292877

RESUMEN

Automated image quantification workflows have dramatically improved over the past decade, enriching image analysis and enhancing the ability to achieve statistical power. These analyses have proved especially useful for studies in organisms such as Drosophila melanogaster, where it is relatively simple to obtain high sample numbers for downstream analyses. However, the developing wing, an intensively utilized structure in developmental biology, has eluded efficient cell counting workflows due to its highly dense cellular population. Here, we present efficient automated cell counting workflows capable of quantifying cells in the developing wing. Our workflows can count the total number of cells or count cells in clones labeled with a fluorescent nuclear marker in imaginal discs. Moreover, by training a machine-learning algorithm we have developed a workflow capable of segmenting and counting twin-spot labeled nuclei, a challenging problem requiring distinguishing heterozygous and homozygous cells in a background of regionally varying intensity. Our workflows could potentially be applied to any tissue with high cellular density, as they are structure-agnostic, and only require a nuclear label to segment and count cells.

9.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L771-L782, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039381

RESUMEN

Multiciliated cell loss is a hallmark of airway epithelial remodeling in chronic inflammatory airway diseases including cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease. It disrupts mucociliary clearance, which fuels disease progression. Effective clearance requires an optimal proportion of multiciliated and secretory cells. This is controlled by Notch signaling such that between two adjacent cells the one that activates Notch becomes a secretory cell and the one that avoids Notch activation becomes a multiciliated cell. Consequently, blocking Notch by a small molecule inhibitor of the γ-secretase enzyme that cleaves the Notch receptor for signal activation directs differentiation toward the multiciliated lineage. Thus, γ-secretase inhibitor (GSI) treatment may alleviate multiciliated cell loss in lung disease. Here, we demonstrate the therapeutic restoration of multiciliated cells by the GSI LY450139 (semagacestat). LY450139 increased multiciliated cell numbers in a dose-dependent manner in healthy primary human nasal epithelial cells (HNECs) during differentiation and in mature cultures, but not when applied during early epithelialization of progenitors. LY450139 did not impact stem cell proliferation. Basal and apical administration were equally effective. In healthy adult mice, LY450139 increased multiciliated cell numbers without detectible toxicity. LY450139 also increased multiciliated cells and decreased excess mucus secretory cells in CF HNECs and IL-13 remodeled healthy HNECs. LY450139 normalized multiciliated cell numbers in CF HNECs without interfering with the activity of CFTR modulator compounds. In summary, we demonstrate that GSI administration is a promising therapeutic to restore multiciliated cells and potentially improve epithelial function in a wide range of chronic lung diseases.NEW & NOTEWORTHY Our findings show that low-dose, short-term topical or systemic γ-secretase inhibitor treatment may lead to restoration of multiciliated cells without toxicity and potentially improve epithelial function in a wide range of chronic lung diseases.


Asunto(s)
Asma , Fibrosis Quística , Humanos , Ratones , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Epitelio/metabolismo , Células Epiteliales/metabolismo , Transducción de Señal/fisiología , Receptores Notch
10.
Front Cell Dev Biol ; 10: 976182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176272

RESUMEN

Planar cell polarity (PCP) signaling polarizes cells within the plane of an epithelium. In the airways, planar cell polarity signaling orients the directional beating of motile cilia required for effective mucociliary clearance. The planar cell polarity signaling mechanism is best understood from work in Drosophila, where it has been shown to both coordinate the axis of polarity between cells and to direct the morphological manifestations of polarization within cells. The 'core' planar cell polarity signaling mechanism comprises two protein complexes that segregate to opposite sides of each cell and interact with the opposite complex in neighboring cells. Proper subcellular localization of core planar cell polarity proteins correlates with, and is almost certainly responsible for, their ability to direct polarization. This mechanism is highly conserved from Drosophila to vertebrates, though for most of the core genes, mammals have multiple paralogs whereas Drosophila has only one. In the mouse airway epithelium, the core protein Prickle2 segregates asymmetrically, as is characteristic for core proteins, but is only present in multiciliated cells and is absent from other cell types. Furthermore, Prickle2 mutant mice show only modest ciliary polarity defects. These observations suggest that other Prickle paralogs might contribute to polarization. Here, we show that Prickle1 segregates asymmetrically in multiciliated and nonciliated airway epithelial cell types, that compared to Prickle2, Prickle1 has different spatial and temporal expression dynamics and a stronger ciliary polarity phenotype, and that Prickle1 and Prickle2 mutants genetically interact. We propose distinct and partially overlapping functions for the Prickle paralogs in polarization of the airway epithelium.

11.
Nat Commun ; 13(1): 5491, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123354

RESUMEN

Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.


Asunto(s)
Mesodermo , Proteínas Ribosómicas/metabolismo , Células Madre , Animales , Diferenciación Celular/genética , Humanos , Mesodermo/metabolismo , Ratones , Ribosomas , Células Madre/metabolismo , Vía de Señalización Wnt
12.
PLoS One ; 17(2): e0262328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35148314

RESUMEN

Planar cell polarity (PCP) signaling regulates several polarization events during development of ommatidia in the Drosophila eye, including directing chirality by polarizing a cell fate choice and determining the direction and extent of ommatidial rotation. The pksple isoform of the PCP protein Prickle is known to participate in the R3/R4 cell fate decision, but the control of other polarization events and the potential contributions of the three Pk isoforms have not been clarified. Here, by characterizing expression and subcellular localization of individual isoforms together with re-analyzing isoform specific phenotypes, we show that the R3/R4 fate decision, its coordination with rotation direction, and completion of rotation to a final ±90° rotation angle are separable polarization decisions with distinct Pk isoform requirements and contributions. Both pksple and pkpk can enforce robust R3/R4 fate decisions, but only pksple can correctly orient them along the dorsal-ventral axis. In contrast, pksple and pkpk can fully and interchangeably sustain coordination of rotation direction and rotation to completion. We propose that expression dynamics and competitive interactions determine isoform participation in these processes. We propose that the selective requirement for pksple to orient the R3/R4 decision and their interchangeability for coordination and completion of rotation reflects their previously described differential interaction with the Fat/Dachsous system which is known to be required for orientation of R3/R4 decisions but not for coordination or completion of rotation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ojo/metabolismo , Proteínas con Dominio LIM/metabolismo , Animales , Encéfalo/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Edición Génica , Genotipo , Proteínas con Dominio LIM/antagonistas & inhibidores , Proteínas con Dominio LIM/genética , Proteínas de la Membrana/metabolismo , Fenotipo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética
13.
PLoS Biol ; 18(3): e3000647, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32163403

RESUMEN

Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipoprotein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins, and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mitochondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5. We propose that in dendrites, canonical Wnt signaling proteins are housed on early endosomes and recruit nucleation sites to branch points.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Endosomas/metabolismo , Microtúbulos/metabolismo , Proteínas Wnt/metabolismo , Animales , Complejo de Señalización de la Axina/genética , Complejo de Señalización de la Axina/metabolismo , Axones/metabolismo , Polaridad Celular , Dendritas/genética , Drosophila , Proteínas de Drosophila/genética , Endosomas/genética , Microtúbulos/genética , Mutación , Receptores Wnt/genética , Receptores Wnt/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
14.
Elife ; 92020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31934858

RESUMEN

Subcellular asymmetry directed by the planar cell polarity (PCP) signaling pathway orients numerous morphogenetic events in both invertebrates and vertebrates. Here, we describe a morphogenetic movement in which the intertwined socket and shaft cells of the Drosophila anterior wing margin mechanosensory bristles undergo PCP-directed apical rotation, inducing twisting that results in a helical structure of defined chirality. We show that the Frizzled/Vang PCP signaling module coordinates polarity among and between bristles and surrounding cells to direct this rotation. Furthermore, we show that dynamic interplay between two isoforms of the Prickle protein determines right- or left-handed bristle morphogenesis. We provide evidence that, Frizzled/Vang signaling couples to the Fat/Dachsous PCP directional signal in opposite directions depending on whether Pkpk or Pksple predominates. Dynamic interplay between Pk isoforms is likely to be an important determinant of PCP outcomes in diverse contexts. Similar mechanisms may orient other lateralizing morphogenetic processes.


Our right and left hands are mirror images of each other and cannot be precisely superimposed. This property, known as chirality, is vital for many tissues and organs to form correctly in humans and other animals. For example, fruit flies have hair-like sensory organs on the edges of their wings known as bristles. One of the cells in each bristle forms a shaft that generally tilts away from the main body of the fly and is anchored in place by another cell known as the socket.A signaling pathway known as PCP signaling controls the directions in which many chiral tissues and organs in animals form. The pathway contains two signaling modules: the global module collects "directional" information about the orientation of the body and sends it to the core module, which interprets this information to control how the tissue or organ grows.Fruit flies have two different versions of one of the core module components ­ known as Prickle and Spiny legs ­ that are thought to alter the direction the core module responds to the information it receives. Mutant flies known as pkpk mutants are unable to make Prickle and their wing bristles tilt in the opposite direction compared to those in normal flies, but it was not clear exactly why this happens.To address this question, Cho et al. studied PCP signaling in the wings of normal and pkpk mutant flies. The experiments showed that Prickle directed the bristles on the right wing of a normal fly to grow in left-handed corkscrew-like patterns in which the emerging shaft and socket of each bristle twisted around each other. As a result, the bristles tilted away from the bodies of the flies. In the pkpk mutants, however, Spiny legs substituted for Prickle, causing the equivalent bristles to grow in a right-handed corkscrew pattern and tilt towards the body.The findings of Cho et al. show that PCP signaling controls the direction fly bristles grow by selectively using Prickle and Spiny legs. In the future, this work may also aid efforts to develop effective screening and treatments for birth defects that result from the failure of chiral tissues and organs to form properly.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Regulación del Desarrollo de la Expresión Génica , Proteínas con Dominio LIM/fisiología , Alas de Animales/embriología , Alelos , Animales , Tipificación del Cuerpo , Polaridad Celular , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Genotipo , Proteínas con Dominio LIM/química , Morfogénesis , Mutación , Isoformas de Proteínas , Transducción de Señal , Alas de Animales/metabolismo
15.
Curr Opin Cell Biol ; 62: 61-69, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31654871

RESUMEN

The planar cell polarity (PCP) signaling pathway, principally understood from work in Drosophila, is now known to contribute to development in a broad swath of the animal kingdom, and its impairment leads to developmental malformations and diseases affecting humans. The 'core' mechanism underlying PCP signaling polarizes sheets of cells, aligning them in a head-to-tail fashion within the sheet. Cells use the resulting directional information to guide a wide variety of processes. One such process is lateralization, the determination of left-right asymmetry that guides the asymmetric morphology and placement of internal organs. Recent evidence extends the idea that PCP signaling underlies the earliest steps in lateralization and that PCP is invoked again during asymmetric morphogenesis of organs including the heart and gut.


Asunto(s)
Polaridad Celular/fisiología , Transducción de Señal/fisiología , Animales , Drosophila , Humanos
16.
Sci Rep ; 9(1): 7079, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068622

RESUMEN

The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKOΔ/Δ glands display normal branching while Vangl2flox/flox and Vangl2Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2flox/flox and Vangl2Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organogénesis/genética , Alelos , Animales , Tipificación del Cuerpo/genética , Polaridad Celular/genética , Desarrollo Embrionario/genética , Femenino , Técnicas de Silenciamiento del Gen , Mutación con Pérdida de Función , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Mutación Missense , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Elife ; 72018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30152757

RESUMEN

Cycling cells maintain centriole number at precisely two per cell in part by limiting their duplication to S phase under the control of the cell cycle machinery. In contrast, postmitotic multiciliated cells (MCCs) uncouple centriole assembly from cell cycle progression and produce hundreds of centrioles in the absence of DNA replication to serve as basal bodies for motile cilia. Although some cell cycle regulators have previously been implicated in motile ciliogenesis, how the cell cycle machinery is employed to amplify centrioles is unclear. We use transgenic mice and primary airway epithelial cell culture to show that Cdk2, the kinase responsible for the G1 to S phase transition, is also required in MCCs to initiate motile ciliogenesis. While Cdk2 is coupled with cyclins E and A2 during cell division, cyclin A1 is required during ciliogenesis, contributing to an alternative regulatory landscape that facilitates centriole amplification without DNA replication.


Asunto(s)
Cilios/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Movimiento , Organogénesis , Animales , Diferenciación Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Centriolos/efectos de los fármacos , Centriolos/metabolismo , Cilios/efectos de los fármacos , Ciclina A1/metabolismo , Ciclina E/metabolismo , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis/efectos de los fármacos , Mutación/genética , Organogénesis/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Purinas/farmacología , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Tráquea/metabolismo , Tráquea/ultraestructura , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
18.
Fly (Austin) ; 12(1): 23-33, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29189094

RESUMEN

Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.


Asunto(s)
Polaridad Celular , Drosophila melanogaster/citología , Programas Informáticos , Alas de Animales/citología , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Pupa/citología , Tricomas/metabolismo
19.
Curr Biol ; 27(20): 3120-3131.e4, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29033332

RESUMEN

Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts.


Asunto(s)
Polaridad Celular/fisiología , Túbulos Renales/fisiología , Morfogénesis , Enfermedades Renales Poliquísticas/fisiopatología , Transducción de Señal , Animales , Femenino , Túbulos Renales/fisiopatología , Masculino , Ratones
20.
Am J Respir Cell Mol Biol ; 56(5): 575-584, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28059551

RESUMEN

The signaling pathways that sustain the disease process of chronic rhinosinusitis with nasal polyps (CRSwNP) remain poorly understood. We sought to determine the expression levels of Wnt signaling genes in CRSwNP and to study the role of the Wnt pathway in inflammation and epithelial remodeling in the nasal mucosa. Microarrays and real time-quantitative polymerase chain reaction comparing gene expression in matched NPs and inferior turbinates revealed that WNT2B, WNT3A, WNT4, WNT7A, WNT7B, and FZD2 were up-regulated and that FZD1, LRP5, LRP6, and WIF1 were down-regulated in NPs. Immunolabeling showed robust expression of Wnt ligands, nuclear ß-catenin, and Axin-2 in NP tissue, suggesting that Wnt/ß-catenin signaling is activated in NPs. We used primary human nasal epithelial cell (HNEpC) cultures to test the functional consequences of Wnt pathway activation. Monolayer HNEpCs treated with recombinant human WNT (rhWNT) 3A, but not with rhWNT4, had altered epithelial morphology and decreased adhesion, without loss of viability. We found that neither rhWNT3A nor rhWNT4 treatment induced proliferation. The expression and release of inflammatory cytokines IL-6 and granulocyte-macrophage colony-stimulating factor were increased after rhWNT3A exposure of HNEpCs. When differentiated at an air-liquid interface, rhWNT3A- and WNT agonist-, but not rhWNT4-treated HNEpCs, had abnormal epithelial architecture, failed to undergo motile ciliogenesis, and had defective noncanonical Wnt (planar cell polarity) signaling. On the basis of these results, we propose a model in which Wnt/ß-catenin signaling sustains mucosal inflammation and leads to a spectrum of changes consistent with those seen during epithelial remodeling in NPs.


Asunto(s)
Pólipos Nasales/complicaciones , Pólipos Nasales/metabolismo , Rinitis/complicaciones , Rinitis/metabolismo , Sinusitis/complicaciones , Sinusitis/metabolismo , Vía de Señalización Wnt , Enfermedad Crónica , Cilios/efectos de los fármacos , Cilios/metabolismo , Sistemas de Computación , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Pólipos Nasales/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Rinitis/patología , Sinusitis/patología , Cornetes Nasales/patología , Proteínas Wnt/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...