Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 209: 115418, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36693437

RESUMEN

Myeloperoxidase (MPO) is a heme-containing peroxidase from phagocytic cells, which plays an important role in the innate immune response. The primary anti-microbial function of MPO is achieved by catalyzing the oxidation of halides by hydrogen peroxide (H2O2). Upon activation of phagocytes, MPO activity is detectable in both phagosomes and extracellularly, where it can remain or transcytose into interstitial compartments. Activated MPO leads to oxidative stress and tissue damage in many inflammatory states, including cardiovascular disease. Starting from a low molecular weight (LMW) high throughput screening (HTS) hit, here we report the discovery of a novel pyrrolidinone indole (IN-4) as a highly potent MPO inhibitor. This compound displays similar in vitro potency across peroxidation, plasma and NETosis assays. In a dilution/dialysis study, <5% of the original MPO activity was detected post-incubation of MPO with IN-4, suggesting irreversible enzyme inhibition. A fast MPO inactivation rate (kinact/Ki) and low partition ratio (k3/k4) make IN-4 kinetic properties attractive for an MPO inhibitor. This compound also displays significant selectivity over the closely related thyroid peroxidase (TPO), and is selective for extracellular MPO over intracellular (neutrophil) MPO. Moreover, IN-4 shows good exposure, low clearance and high oral bioavailability in mice, rats and dogs. The high in vitro MPO activity and high oral exposure observed with IN-4 result in a dose-dependent inhibition of MPO activity in three mouse models of inflammation. In conclusion, IN-4 is a novel, potent, mechanism-based and selective MPO inhibitor, which may be used as superior therapeutic agent to treat multiple inflammatory conditions, including cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Peroxidasa , Ratas , Ratones , Animales , Perros , Peróxido de Hidrógeno , Antioxidantes , Indoles , Pirrolidinonas
2.
Bioorg Med Chem ; 28(12): 115548, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32503688

RESUMEN

Myeloperoxidase (MPO) activity and subsequent generation of hypochlorous acid has been associated with the killing of host-invading microorganisms (e.g. bacteria, viruses, and fungi). However, during oxidative stress, high MPO activity can damage host tissue and is linked to several chronic inflammatory conditions. Herein, we describe the development of a novel biaryl, indole-pyrazole series of irreversible mechanism-based inhibitors of MPO. Derived from an indole-containing high-throughput screen hit, optimization efforts resulted in potent and selective 6-substituted indoles with good oral bioavailability and in vivo activity.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , Indoles/metabolismo , Peroxidasa/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Semivida , Indoles/química , Indoles/farmacocinética , Indoles/uso terapéutico , Ratones , Peritonitis/tratamiento farmacológico , Peritonitis/patología , Peroxidasa/antagonistas & inhibidores , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/farmacocinética , Relación Estructura-Actividad
3.
J Pharmacol Exp Ther ; 367(1): 147-154, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30076263

RESUMEN

Myeloperoxidase (MPO) is a leukocyte-derived redox enzyme that has been linked to oxidative stress and damage in many inflammatory states, including cardiovascular disease. We have discovered aminopyridines that are potent mechanism-based inhibitors of MPO, with significant selectivity over the closely related thyroid peroxidase. 1-((6-Aminopyridin-3-yl)methyl)-3-(4-bromophenyl)urea (Aminopyridine 2) inhibited MPO in human plasma and blocked MPO-dependent vasomotor dysfunction ex vivo in rat aortic rings. Aminopyridine 2 also showed high oral bioavailability and inhibited MPO activity in vivo in a mouse model of peritonitis. Aminopyridine 2 could effectively be administered as a food admixture, making it an important tool for assessing the relative importance of MPO in preclinical models of chronic inflammatory disease.


Asunto(s)
Aminopiridinas/farmacología , Inhibidores Enzimáticos/farmacología , Peroxidasa/antagonistas & inhibidores , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Disponibilidad Biológica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...