Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
AAPS PharmSciTech ; 23(1): 15, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893923

RESUMEN

The crucial challenge in tuberculosis (TB) as a chronic infectious disease is to present a novel vaccine candidate that improves current vaccination and provides efficient protection in individuals. The present study aimed to evaluate the immune efficacy of multi-subunit vaccines containing chitosan (CHT)- or trimethyl chitosan (TMC)-coated PLGA nanospheres to stimulate cell-mediated and mucosal responses against Mycobacterium Tuberculosis (Mtb) in an animal model. The surface-modified PLGA nanoparticles (NPs) containing tri-fusion protein from three Mtb antigens were produced by the double emulsion technique. The subcutaneously or nasally administered PLGA vaccines in the absence or presence of BCG were assessed to compare the levels of mucosal IgA, IgG1, and IgG2a production as well as secretion of IFN-γ, IL-17, IL-4, and TGF-ß cytokines. According to the release profile, the tri-fusion encapsulated in modified PLGA NPs demonstrated a biphasic release profile including initial burst release on the first day and sustained release within 18 days. All designed PLGA vaccines induced a shift of Th1/Th2 balance toward Th1-dominant response. Although immunized mice through subcutaneous injection elicited higher cell-mediated responses relative to the nasal vaccination, the intranasally administered groups stimulated robust mucosal IgA immunity. The modified PLGA NPs using TMC cationic polymer were more efficient to elevate Th1 and mucosal responses in comparison with the CHT-coated PLGA nanospheres. Our findings highlighted that the tri-fusion loaded in TMC-PLGA NPs may represent an efficient prophylactic vaccine and can be considered as a novel candidate against TB.


Asunto(s)
Quitosano , Nanosferas , Tuberculosis , Administración Intranasal , Animales , Ratones , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tuberculosis/prevención & control , Vacunas de Subunidad
3.
Bioorg Med Chem Lett ; 43: 128107, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991624

RESUMEN

Triple-Negative Breast Cancer (TNBC) is a highly aggressive form of breast cancer. The high rate of metastasis associated with TNBC is attributed to its multidrug resistance, making the treatment of this metastatic condition difficult. The development of metal-based antitumor agents was launched with the discovery of cisplatin, followed by the development of related antitumor drugs such as carboplatin and oxaliplatin. Yet, the severe side effects of this approach represent a limitation for its clinical use. The current search for new metal-based antitumor agents possessing less severe side effects than these platinum-based complexes has focused on various complexes of nickel and palladium, the group 10 congeners of platinum. In this work, we have prepared a series of SCS-type pincer complexes of nickel and palladium featuring a stable meta-phenylene central moiety and two chelating but labile thioamide donor moieties at the peripheries of the ligand. We have demonstrated that the complexes in question, namely L1NiCl, L1NiBr, L1PdCl, L2PdCl, and L3PdCl, are active on the proliferation of estrogen-dependent breast tumor cells (MCF-7 and MC4L2) and triple-negative breast cancer (4 T1). Among the complexes studied, the palladium derivatives were found to be much safer anticancer agents than nickel counterparts; these were thus selected for further investigations for their effects on tumor cell adhesion and migration as well. The results of our studies show that palladium complexes are effective for inhibiting TNBC 4 T1 cells adhesion and migration. Finally, the HOMO and LUMO analysis was used to determine the reactivity and charge transfer within the compounds.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Complejos de Coordinación/farmacología , Níquel/farmacología , Paladio/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Estructura Molecular , Níquel/química , Paladio/química , Relación Estructura-Actividad
4.
Int Immunopharmacol ; 85: 106603, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32485357

RESUMEN

The efficacy improvement of current sublingual immunotherapy (SLIT) for preventing and treating respiratory airway allergic diseases is the main purpose of many investigations. In this study, we aimed to assess whether ovalbumin (Ova) encapsulated poly (lactic-co-glycolic) acid nanoparticles (PLGA NPs) decorated with dendritic cells (DCs)-specific aptamer could be applied for this purpose.The nanoparticles containing Ova were synthesized by emulsion/solvent evaporation method and attached to DCs-specific aptamer. Ova-sensitized BALB/c mice have been treated in five ways: subcutaneously with free Ova (SCIT), sublingually either with free Ova, Ova-PLGA NPs (two doses), Apt-Ova-PLGA NPs (two doses) and placebo/control Apt-Ova-PLGA NPs. For assessment of immunologic responses, IL-4, IFN-γ, IL-17, IL10, and TGF-ß and IgE antibody levels were measured by ELISA and T cell proliferation were evaluated by MTT. In addition, lung and nasal histological examinations, NALF cells counting were carried out. Results declared that the lowest IgE and IL- 4 levels were observed in Apt-Ova-PLGA NPs (both doses). In the other hands, Apt-Ova-PLGA NPs (high dose) showed the highest increase of IFN- γ and TGF- ß, decrease of IL-17 levels, total cell count and T-cell proliferation. IL-10 levels showed more decrease in SCIT, Apt-Ova-PLGA NPs (high dose) and Ova-PLGA NPs (high dose) than other groups. Histopathological examinations also confirmed in vitro results. Our findings suggest SLIT with this functionalized delivery system could be a promising approach for promoting the SLIT efficiency by decreasing the required allergen doses through specific delivery of allergen to sublingual DCs and enhancing the suppression of allergic responses.


Asunto(s)
Alérgenos/administración & dosificación , Aptámeros de Nucleótidos/administración & dosificación , Células Dendríticas/inmunología , Nanopartículas/administración & dosificación , Ovalbúmina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Rinitis Alérgica/terapia , Inmunoterapia Sublingual , Animales , Femenino , Ratones Endogámicos BALB C
5.
Int Immunopharmacol ; 86: 106690, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32585607

RESUMEN

BACKGROUND: Sublingual immunotherapy (SLIT) was introduced to deliver allergens in an effective and non-invasive route, which can be considered as an alternative for allergen-specific subcutaneous immunotherapy (SCIT). On the other hand, the use of gold nanoparticles (AuNPs) in allergen delivery has beneficial effects on sublingual immunotherapy. In addition, the molecular targeting agents like aptamers (Apt), have been widely applied for targeted drug delivery. Therefore, the current study aimed to evaluate the effects of dendritic cells (DCs)-specific Aptamer-modified AuNPs coated with ovalbumin (OVA) on the improvement of the SLIT outcome in the mouse model of allergy. MATERIAL AND METHODS: AuNPs with approximately 15 nm diameter were prepared by citrate reduction of HAuCl4. Afterward, Apt-modified AuNP complex was prepared and OVA was then loaded onto this complex. Following sensitization of Balb/c mice to OVA, SLIT was performed with Apt-AuNPs containing 5 µg OVA twice a week for a 2-month period. Allergen-specific IgE in serum, as well as cytokines secretion of spleen cells, were analyzed using ELISA. Also, nasopharyngeal lavage Fluid (NALF) was collected for total and eosinophil counts. Moreover, the lungs were removed for histopathological examination. RESULTS: SLIT with Apt-modified AuNPs complex containing 5 µg OVA, decreased the IgE levels compared to the other groups. Also, IL-4 production has significantly decreased in spleen cells, while TGF-ß and IFN-γ have significantly increased. The assessment of NALF in the group treated by this complex showed a decrease in total cell as well as in eosinophil count. Also, the examination of lung tissues revealed that, in the group treated by this complex, inflammation and perivascular infiltration were lesser than the other groups, which were observed in only one vessel of tissue. CONCLUSION: It was shown that, Sublingual immunotherapy with DC specific Apt-modified AuNPs containing 5 µg OVA can improve the Th1 and Treg immunomodulatory responses.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Células Dendríticas/metabolismo , Portadores de Fármacos/administración & dosificación , Oro/administración & dosificación , Hipersensibilidad/tratamiento farmacológico , Nanopartículas del Metal/administración & dosificación , Inmunoterapia Sublingual/métodos , Alérgenos/administración & dosificación , Alérgenos/química , Alérgenos/inmunología , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/uso terapéutico , Materiales Biocompatibles/química , Citocinas/metabolismo , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Eosinófilos/metabolismo , Femenino , Oro/química , Inmunoglobulina E/sangre , Pulmón/patología , Nanopartículas del Metal/química , Ratones Endogámicos BALB C , Líquido del Lavado Nasal/inmunología , Ovalbúmina/administración & dosificación , Ovalbúmina/química , Ovalbúmina/inmunología , Bazo/inmunología , Linfocitos T Reguladores/metabolismo , Células TH1/metabolismo
6.
Int J Pharm ; 584: 119403, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32387307

RESUMEN

Recently, the main goal of many allergy epicutaneous immunotherapy (EPIT) studies is to enhance the allergen delivery through the intact skin. Therefore, applying new strategies for tackling this issue are inevitable. For this purpose, ten groups of Che a 2-sensitized BALB/c mice were epicutaneously treated for a 6-week period with the rChe a 2-GNPs-Aptamer, rChe a 2-GNPs-Aptamer + skin-penetrating peptides (SPPs), rChe a 2-GNPs, rChe a 2, GNPs, and PBS. Afterward, the serum IgE and IFN-γ, TGF-ß, IL-10, IL-4, IL-17a cytokine production, NALF analysis, and lung/nasal histological examinations were performed. The present study results demonstrate that, EPIT in aptamer treated groups had a significant increase of IFN-γ, TGF-ß, and IL-10 concentrations and a significant decrease of IgE, IL-4, and IL-17a concentrations as well as NALF infiltrated immune cell count compared to the non-targeted ones. In addition, SPPs led to more significant improvement of immunoregulatory parameters, especially IL-10 cytokine. Accordingly, the targeted-GNPs with DC-specific aptamers could act as an efficient approach for the improvement of EPIT efficacy compared to the free allergen. Moreover, the application of SPPs might be considered as a useful tool in achieving a successful EPIT with lower doses of allergen at a shorter duration of the treatment.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Oro/química , Inmunoglobulina E/sangre , Mediadores de Inflamación/metabolismo , Nanopartículas del Metal/química , Rinitis Alérgica/terapia , Administración Cutánea , Animales , Aptámeros de Nucleótidos/administración & dosificación , Citocinas/biosíntesis , Células Dendríticas , Desensibilización Inmunológica , Femenino , Ratones , Ratones Endogámicos BALB C
7.
EXCLI J ; 18: 429-438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338012

RESUMEN

TOX3 and FOXA1 proteins are believed to be involved in the susceptibility of breast cancer. rs4784227-CASC16 and rs4782447-ACSF3, as single nucleotide polymorphisms (SNPs), located at the 16q may affect the FOXA1 DNA binding sequence change and therefore may enhance the FOXA1-binding affinity to the promoter of TOX3 gene. This study aimed to investigate the association of these SNPs/haplotypes with breast cancer susceptibility in an Iranian population. We conducted a case-control study of 1072 blood samples (505 breast cancer patients and 567 controls). Genotyping of rs4784227-CASC16 and rs4782447-ACSF3 SNPs was carried out by ARMS-PCR. Moreover, statistical analysis was done using SPSS version 20.0 (IBM Inc., Chicago, IL, USA), PHASE v 2.1 and SNP analyser 2.0. There was a strongly significant statistical association between alleles and genotypes of rs4784227-CASC16 with breast cancer risk in our study population (p<0.05). Moreover, a significant association was demonstrated between TA haplotype and breast cancer risk (OR=0.78; 95% CI (0.62-0.96); P- value =0.025). In this respect, although we did not observe a statistically significant association between rs4782447-ACSF3 with breast cancer susceptibility, the combination of the effects of rs4784227-CASC16 and rs4782447-ACSF3 SNPs may also affect the risk. This is in line with other studies suggesting these SNPs as risk-associated polymorphisms which may lead to a change in the affinity of FOXA1, as a distal enhancer, to TOX3 and thus change in TOX3 expression, which can eventually affect the risk of breast cancer.

8.
Rep Biochem Mol Biol ; 7(2): 150-155, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30805394

RESUMEN

BACKGROUND: Gamma irradiation is a form of processing with an array of applications in medical sciences such as microbial decontamination, viruses inactivation, cervical carcinoma and breast cancer treatment. One of the ways in which gamma irradiation has the potential to be used is in reducing the allergenicity of food allergens. METHODS: In the present study, pistachios were irradiated with either a 1, 10, or 100 kGy dose of gamma irradiation. The binding rate of mice and human antibodies to the allergens of the pistachio extracts were examined via Western blot analysis. RESULTS: Our findings show an inverse dose-response relationship between the binding rate of antibodies to the pistachio allergens and the gamma irradiation dose. Despite these promising findings, the results of our sensory evaluation indicate that gamma irradiation causes undesirable changes to the sensory characteristics of pistachios, especially at the dose of 100 kGy. CONCLUSION: Gamma irradiation appears to be an effective method in reducing the allergenicity of pistachios. Thus, this form of processing has the potential to prevent adverse allergic reactions to the major pistachio allergens in sensitized subjects. However, further research must be dedicated to examining the dose sufficient in reducing allergencity, while maintaining adequate sensory quality for satisfactory consumption.

9.
J Immunoassay Immunochem ; 40(2): 139-148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30346872

RESUMEN

The incidence of grape (Vitis vinifera) allergy in the northeast of Iran is second to melon allergy. Type IV chitinase is one of the major grape allergens. The current study investigates the level of type IV chitinase in four grape variants for the first time in Khorasan Razavi Province using a highly sensitive sandwich enzyme-linked immunosorbent assay (ELISA). This assay was developed using a polyclonal antibody as a capture antibody and monoclonal antibody as a secondary one. Finally, the amount of type IV chitinase was measured by the validated ELISA test. The sensitivity of the developed sandwich ELISA is 16 ± 0.05 ng/ml, and its mean coefficients of intraday and interday variations are <5% and <15%, respectively. The recovery of the designed ELISA is 64 ± 0.9 %. The assessments showed that the highest level of type IV chitinase was 39.7 ± 2.3 µg/g in Peykani grape, whereas in the Sultana cultivar, it was 1.76 ± 0.1 µg/g. According to the data, the level of type IV chitinase is variable in different cultivars, and hence, it will be helpful for clinicians to recommend a less allergenic variety to the patient.


Asunto(s)
Alérgenos/análisis , Quitinasas/análisis , Ensayo de Inmunoadsorción Enzimática , Vitis/química , Alérgenos/inmunología , Anticuerpos/inmunología , Reacciones Antígeno-Anticuerpo , Quitinasas/inmunología , Irán , Vitis/inmunología
10.
Biomed Pharmacother ; 109: 2305-2308, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551488

RESUMEN

C-reactive protein (CRP) is an acute-phase protein which can bind to and aggregate oxidized low-density lipoprotein (ox-LDL) particles, thereby enhancing the uptake of oxLDL by macrophages. This finally leads to the formation of foam cells that are a typical characteristic of atherosclerotic plaques. Serum CRP has been shown to bind to phospholipids such as phophatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylserine (PS). Owing to the rapid and efficient clearance of nanoliposomes from the circulation by the liver, we hypothesized that nanoliposomes composed of the mentioned phospholipids can serve as a potential tool to lower elevated serum CRP levels following acute inflammation. To evaluate this hypothesis, nanoliposomal formulations containing hydrogenated soy phosphatidylcholine (HSPC), a combination of HSPC and 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG), and a combination of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) were prepared using lipid film hydration method followed by extrusion at the final concentration of 20 mM. To elevate circulating CRP levels in mice, 0.1 ml of Freund's complete adjuvant (CFA) containing 5 mg/ml heat-killed Mycobacterium tuberculosis was subcutaneously injected into the hind paw of the mice. CFA-challenged mice were intravenously treated with nanoliposomal formulations at the dose of 250 µmol/kg 16 h after CFA challenge that is coincided with peak serum CRP level. After 2 h, the blood was collected and serum level of CRP was measured using a quantitative sandwich enzyme-linked immunosorbent assay. All nanoliposomal formulations showed a size range from 100 to 150 nm in diameter and a polydispersity index of < 0.1. Results showed that all nanoliposomal formulations including DOPC/DOPS, HSPC and HSPC/DSPG could significantly decrease serum levels of CRP by 82.76% (74.44-86.92%, p = 0.0001), 44.41% (35.79-50.21%, p = 0.0001) and 38.47% (17.21-43.52%, p=0.0002) [Median (interquartile range)], respectively, when compared with the control group. Dexamethasone as a standard could decrease serum CRP level by 27.47% (16.32-31.63%, p = 0.0025) which was a smaller effect compared with the nanoliposomal preparations. In conclusion, negatively charged nanoliposomes could efficiently reduce the elevated serum levels of CRP in CFA-challenged mice.


Asunto(s)
Proteína C-Reactiva/antagonistas & inhibidores , Proteína C-Reactiva/metabolismo , Nanopartículas/administración & dosificación , Fosfolípidos/administración & dosificación , Animales , Inflamación/sangre , Inflamación/tratamiento farmacológico , Liposomas , Masculino , Ratones , Fosfatidilcolinas/administración & dosificación , Fosfatidilserinas/administración & dosificación , Factores de Tiempo
11.
Crit Rev Oncol Hematol ; 116: 147-158, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28693796

RESUMEN

Berberine (BBR) is an isoquinoline alkaloid found in different plant families such as Berberidaceae, Ranunculaceae, and Papaveraceae. BBR is well-known for its anti-inflammatory, lipid-modifying, anticancer, anti-diabetic, antibacterial, antiparasitic and fungicide activities. Multiple pharmacological actions of BBR stem from different molecular targets of this phytochemical. MicroRNAs (miRs) are single-stranded, evolutionary conserved, small non-coding RNA molecules with a length of 19-23 nucleotides that are involved in RNA silencing and post-transcriptional regulation of gene expression through binding to the 3'-untranslated region (3'UTR) of target mRNA. MiRs emerged as important regulatory elements in almost all biological processes like cell proliferation, apoptosis, differentiation and organogenesis, and numerous human diseases such as cancer and diabetes. BBR was shown to regulate the expression of miRs in several diseases. Here, we reviewed the target miRs of BBR and the relevance of their modulation for the potential treatment of serious human diseases like multiple myeloma, hepatocellular carcinoma, colorectal cancer, gastric cancer, ovarian cancer and glioblastoma. The role of miR regulation in the putative anti-diabetic effects of BBR is discussed, as well.


Asunto(s)
Apoptosis/efectos de los fármacos , Berberina/farmacología , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Humanos , MicroARNs/genética , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA