Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Sci ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39184287

RESUMEN

Activation of phenols by a Ru-catalyst allows for the resulting η5-phenoxo complex to selectively react with a variety of nucleophiles under mechanochemical conditions. Conversion of phenolic hydroxy groups without derivatization is important for late-stage modifications of pharmaceuticals and in the context of lignin-material processing. We present a one-step, Ru-catalyzed cross-coupling of phenols with boronic acids, aryl trialkoxysilanes and potassium benzoyltrifluoroborates under mechano-chemical conditions. The protocol accepts a wide scope of starting materials and allows for gram-scale synthesis in excellent yields. The developed approach constitutes a very interesting and waste-limiting alternative to the known methods.

2.
Sci Rep ; 14(1): 19068, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154101

RESUMEN

Herein we have reported a fluorescent probe (MB-M) based on MB derivative for Cu2+ ions detection. The probe was well characterized by 1H NMR, 13C NMR and HR-MS spectrum. Probe MB-M showed naked-eyes recognition to Cu2+ as color change from colorless to indigo. The probe exhibited promising features such as high fluorescence and UV-vis selectivity, fast response (5 mint), workable at pH 2-7, and low limit of detection (LOD = 0.33 µM). Probe MB-M was also used for Cu2+ ions imaging in HepG-2 cells and detection in daily life (Test Strip and lake water). Moreover, non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analysis were used to study the interaction between MB-M and Cu2+ ions. By examining the electronic characteristics of the complex using natural bond orbital (NBO), electron density difference (EDD), and frontier molecular orbital (FMO) analysis, the sensitivity of MB-M towards Cu2+ ions were investigated. The results illustrated that the interactions between MB-M and Cu2+ ions involved chemisorption.


Asunto(s)
Cobre , Colorantes Fluorescentes , Cobre/análisis , Cobre/química , Colorantes Fluorescentes/química , Humanos , Células Hep G2 , Imagen Óptica/métodos , Iones , Espectrometría de Fluorescencia/métodos , Límite de Detección
3.
Food Chem ; 455: 139869, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850977

RESUMEN

Although citric acid (CA) has antioxidant, antibacterial, and acidulating properties, chronic ingestion of CA can cause urolithiasis, hypocalcemia, and duodenal cancer, emphasizing the need for early detection. There are very few documented electrochemical-based sensing methods for CA detection due to the challenging behavior of electrode fouling caused by reactive oxidation products. In this study, a novel, non-enzymatic, and economical electrochemical sensor based on cobalt oxide nanoparticles (CoOxNPs) is successfully reported for detection CA. The CoOxNPs were synthesized through a simple thermal decomposition method and characterized by SEM, FT-IR, EDX, and XRD techniques. The proposed sensing platform was optimized by various parameters, including pH (7.0), time (15 min), and concentration of nanoparticles (100 mM) etc. In a linear range of 0.05-2500 µM, a low detection limit (LOD) of 0.13 µM was achieved. Theoretical calculations (ΔRT), confirmed hydrogen bonding and electrostatic interactions between CoOxNPs and CA. The detection method exhibited high selectivity in real media like food and biological samples, with good recovery values when compared favorably to the HPLC method. To facilitate effective on-site investigation, such a sensing platform can be assembled into a portable device.


Asunto(s)
Ácido Cítrico , Cobalto , Técnicas Electroquímicas , Óxidos , Cobalto/química , Técnicas Electroquímicas/instrumentación , Óxidos/química , Ácido Cítrico/química , Nanopartículas del Metal/química , Límite de Detección , Nanopartículas/química
4.
J Mol Graph Model ; 130: 108791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776762

RESUMEN

A novel series of alkaline earthides containing eight complexes based upon 36adz complexant are designed by placing carefully transition metals (V-Zn) on inner side and alkaline earth metal outer side of the complexant i.e., M+(36adz) Be- (M+ = V, Cr, Mn, Fe, Co, Ni, Cu and Zn). All the designed compounds are electronically and thermodynamically stable as evaluated by their interaction energy and vertical ionization potential respectively. Moreover, the true nature of alkaline earthides is verified through NBOs and FMO study, showing negative charge and excess electrons on alkaline earth metal respectively. Furthermore, true alkaline earthides characteristics are evaluated graphically by spectra of partial density state (PDOS). The energy gap (HOMO -LUMO gap) is very small (ranging 2.95 eV-1.89 eV), when it is compared with pure cage 36adz HOMO-LUMO gap i.e., 8.50 eV. All the complexes show a very small value of transition energy ranging from 1.68eV to 0.89eV. Also, these possess higher hyper polarizability values up to 2.8 x 105au (for Co+(36adz) Be-). Furthermore, an increase in hyper polarizability was observed by applying external electric field on complexes. The remarkable increase of 100fold in hyper polarizability of Zn+(36adz) Be- complex is determined after application of external electric field i.e., from 1.7 x 104 au to 1.7 x 106 au when complex is subjected to external electric field of 0.001 au strength. So, when external electric field is applied on complexes it enhances the charge transfer, polarizability and hyper polarizability of complexes and proves to be effective for designing of true alkaline earthides with remarkable NLO response.


Asunto(s)
Metales Alcalinotérreos , Metales Alcalinotérreos/química , Termodinámica , Modelos Moleculares , Complejos de Coordinación/química
5.
ACS Omega ; 9(12): 14043-14053, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559943

RESUMEN

Substantial efforts have been made to design and investigate new approaches for high-performance nonlinear optical (NLO) materials. Herein, we report polaron formation in conducting polymers as a new approach to designing materials with a large NLO response. A comparative study of polypyrrole and polypyrrole-based polaron (nPy+ where n = 1, 3, 5, 7, and 9) is carried out for optoelectronic and NLO properties. The studied polarons (PPy+) show excellent electronic properties and have reduced ionization potential (IP) as compared to neutral PPy, and a monotonic decrease is observed with increased chain lengths (1Py to 9Py). Interesting trends of global reactivity descriptors can be seen; the softness (S) increases with an increase in the chain length of PPy, while the hardness (η) decreases in the same fashion. The EH-L gaps for the PPy+ polaronic state are significantly lower than their corresponding neutral PPy. In the polaronic model (PPy+), radicals decisively reduce the crucial excitation energy, reminiscent of excess electrons (alkali metals). The performed TDOS spectral analysis further justifies the better conductive and electronic properties of polarons (PPy+) with increased chain lengths (conjugation). The static hyperpolarizability response (ßo) is recorded up to 1.3 × 102 au for 9Py, while for polaron 9Py+, it has increased up to 3.2 × 104 au. The static hyperpolarizability of the 9Py+ polaronic state is 246 times higher than that of the corresponding neutral analogue, 9Py. It is observed that the values of ßo obtained at the CAM-B3LYP/6-311+G(d,p) level of theory are comparable to those obtained at the LC-BLYP and ωB97XD functionals. The ßvec values show a strong correlation with the total hyperpolarizability (ßo). Furthermore, the calculated second harmonic generation (SHG) values are up to 4.0 × 106 au at 532 nm, whereas electro-optic Pockel's effect (EOPE) is much more pronounced at the smaller dispersion frequency (1064 nm). The TD-DFT study reveal the red-shifted absorption maxima (λmax) with an increased length of PPy+. A significant reduction in excitation energy (ΔE) is observed with increased length of PPy and PPy+, which also favors the improved NLO response. Hence, the studied thermally conducting polypyrrole-based polarons (PPy+) are new entries into NLO materials with better electrical and optical features.

6.
Phys Chem Chem Phys ; 26(8): 6794-6805, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323625

RESUMEN

Calixarenes, as novel organic materials, can play a pivotal role in the development of high-performance nonlinear optical materials due to the ease of design and fabrication. In this study, DFT simulations were employed to investigate the geometric, electronic, and NLO responses of calix[4]arene doped with Li3O, Na3O, and K3O superalkalis. The computed values of the vertical ionization energies and interaction energies indicate the chemical and thermodynamic stabilities of the targeted M3O@calix[4]arene complexes. The corresponding energy gaps (2.01 to 3.49 eV) are notably reduced, indicating the semiconductor nature of the materials. Surprisingly, the M3O@calix[4]arene complexes exhibit transparency in the UV/visible range as the absorption peaks are shifted in the near infrared (NIR) region. The highest values of 5.9 × 105 a.u. and 2.3 × 108 a.u. for the respective first and second hyperpolarizabilities are observed for Na3O@calix[4]arene. Furthermore, the Na3O@calix[4]arene complex exhibits maximum values of 2.3 × 105 a.u. for second harmonic generation (SHG) and (K3O@calix[4]arene) 2.3 × 106 a.u. for the electro-optical Pockels effect (EOPE) at 1064 nm. Similarly, approximations are made for the dynamic second hyperpolarizability coefficients (EOKE and EFISHG) at different wavelengths. Notably, the Na3O@calix[4]arene complex demonstrates the highest quadratic nonlinear refractive index (n2) of 9.5 × 10-15 cm2 W-1 at 1064 nm. This research paves the way for the development of stable calix[4]arenes doped with superalkalis, leading to an improved nonlinear optical (NLO) response.

7.
Saudi Pharm J ; 32(2): 101936, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261938

RESUMEN

In this work, we investigated Diospyros kaki extract and an isolated compound for their potential as xanthine oxidase (XO) inhibitors, a target enzyme involved in inflammatory disorders. The prepared extract was subjected to column chromatography, and dinaphthodiospyrol S was isolated. Then XO inhibitory properties were assessed using a spectrophotometry microplate reader. DMSO was taken as a negative control, and allopurinol was used as a standard drug. The molecular docking study of the isolated compound to the XO active site was performed, followed by visualization and protein-ligand interaction. The defatted chloroform extract showed the highest inhibitory effect, followed by the chloroform extract and the isolated compound. The isolated compound exhibited significant inhibitory activity against XO with an IC50 value of 1.09 µM. Molecular docking studies showed that the compound strongly interacts with XO, forming hydrogen bond interactions with Arg149 and Cys113 and H-pi interactions with Cys116 and Leu147. The binding score of -7.678 kcal/mol further supported the potential of the isolated compound as an XO inhibitor. The quantum chemical procedures were used to study the electronic behavior of dinaphthodiospyrol S isolated from D. kaki. Frontier molecular orbital (FMO) analysis was performed to understand the distribution of electronic density, highest occupied molecular orbital HOMO, lowest unoccupied molecular orbital LUMO, and energy gaps. The values of HOMO, LUMO, and energy gap were found to be -6.39, -3.51 and 2.88 eV respectively. The FMO results indicated the intramolecular charge transfer. Moreover, reactivity descriptors were also determined to confirm the stability of the compound. The molecular electrostatic potential (MEP) investigation was done to analyze the electrophilic and nucleophilic sites within a molecule. The oxygen atoms in the compound exhibited negative potential, indicating that they are favorable sites for electrophilic attacks. The results indicate its potential as a therapeutic agent for related disorders. Further studies are needed to investigate this compound's in vivo efficacy and safety as a potential drug candidate.

8.
ACS Omega ; 9(3): 3541-3553, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284053

RESUMEN

Ab initio calculations were performed to determine the sensing behavior of g-C3N4 and Li metal-doped g-C3N4 (Li/g-C3N4) quantum dots toward toxic compounds acetamide (AA), benzamide (BA), and their thio-analogues, namely, thioacetamide (TAA) and thiobenzamide (TAA). For optimization and interaction energies, the ωB97XD/6-31G(d,p) level of theory was used. Interaction energies (Eint) illustrate the high thermodynamic stabilities of the designed complexes due to the presence of the noncovalent interactions. The presence of electrostatic forces in some complexes is also observed. The observed trend of Eint in g-C3N4 complexes was BA > TAA > AA > TBA, while in Li/g-C3N4, the trend was BA > AA > TBA > TAA. The electronic properties were studied by frontier molecular orbital (FMO) and natural bond orbital analyses. According to FMO, lithium metal doping greatly enhanced the conductivity of the complexes by generating new HOMOs near the Fermi level. A significant amount of charge transfer was also observed in complexes, reflecting the increase in charge conductivity. NCI and QTAIM analyses evidenced the presence of significant noncovalent dispersion and electrostatic forces in Li/g-C3N4 and respective complexes. Charge decomposition analysis gave an idea of the transfer of charge density between quantum dots and analytes. Finally, TD-DFT explained the optical behavior of the reported complexes. The findings of this study suggested that both bare g-C3N4 and Li/g-C3N4 can effectively be used as atmospheric sensors having excellent adsorbing properties toward toxic analytes.

9.
J Mol Graph Model ; 126: 108646, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37816302

RESUMEN

Nonlinear optical (NLO) switchable materials play a crucial role in the fields of electronics and optoelectronics. The selection of an appropriate switching approach is vital in designing such materials to enhance their NLO response. Among various approaches, thermos-switching materials have shown a 4-fold increase in NLO response compared to other photo-switching materials. In this study, we computationally investigated the geometric, electronic, and nonlinear optical properties of reversible lactone-based thermochromic compounds using the ωB97XD/6-311+G (d,p) level of theory. Molecular orbital studies are employed to analyze the electronic properties of the close and open isomers of these compounds, while time-dependent density functional theory (TD-DFT) analysis is utilized to evaluate their molecular absorption. Our findings reveal that the π-electronic conjugation-induced delocalization significantly influences the ON-OFF switchable nonlinear optical response of the lactone-based thermochromic compounds. Notably, among all compounds, the open isomer of lactone 2 exhibits the highest hyperpolarizability value (6596.69 au). Furthermore, we extended our analysis to investigate the frequency-dependent second and third-order hyperpolarizabilities. The most pronounced frequency-dependent NLO response is observed at 532 nm. Additionally, we calculated the refractive index of these thermochromic compounds to further assess their nonlinear optical response. The open isomer of lactone 1 demonstrates the highest refractive index value (3.99 × 10-14 cm2/W). Overall, our study highlights the excellent potential of reversible thermochromic compounds as NLO molecular thermos-switches for future applications.


Asunto(s)
Refractometría , Teoría Funcional de la Densidad
10.
ACS Omega ; 8(48): 45589-45598, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075839

RESUMEN

Scientists are continuously trying to discover new approaches to develop materials with exceptional nonlinear optical responses. Compared with the single-ring Janus face compound (F6C6H6), the three-ring Janus face compound (C13H10F12) has a larger surface, where superalkali metals can be doped quite easily. Herein, the nonlinear optical response of Janus molecule dodecafluorophenylene (DDFP)-based superalkalides has been explored. The stability of the newly designed complexes is evident in the negative interaction energy values (ranging from -42.17 to -60.91 kcal/mol). The superalkalide nature of the complexes is corroborated through natural bond orbital (NBO) analysis, which shows negative charges on M3. This feature is further confirmed through frontier molecular orbital (FMO) analyses showing the highest occupied molecular orbital (HOMO) density over superalkalis (M3). The analysis also reveals that the H-L gap is reduced from 9.57 eV (for bare DDFP) to 2.11 eV for doped systems by adsorption of dopants on the DDFP surface. Moreover, the NLO response of the studied complexes is evaluated via static hyperpolarizabilities. The maximum value of first hyperpolarizability (ßo) among all of the designed compounds is for K3-DDFP-K3 (7.80 × 104 au) at M06-2X/6-31+G(d,p) level of theory. The ßo is also rationalized through a two-level model. Furthermore, for ßvec, the projection of hyperpolarizability on the dipole moment is calculated. The comparable results of ßvec and ßo indicate that the charge transfer in the complexes is parallel to the molecular dipole moments. These compounds, besides providing a new entry into excess-electron compounds, will also pave the way for the design and synthesis of further novel NLO materials.

11.
Heliyon ; 9(12): e22575, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046163

RESUMEN

Medicinal plants are the main source of active chemical constituents responsible for curing or mitigating various ailments. To discover new, safe, and effective drug candidates the isolation and screening of natural products are essential. In the current research work, lapachol was isolated from Fernandoa adenophylla, which was evaluated for anti-inflammatory effect followed by molecular docking. The isolated compound was tested for anti-inflammatory effects using in vitro (HRBC assay) and in vivo (xylene-induced ear edema) experimental models. Various concentrations of lapachol demonstrated anti-inflammatory effects with a percent potential of 77.96 at 100 µM. Different concentrations of Lapachol demonstrated a dose-dependent anti-edematous effect with a maximum percent effect of 77.9 % at a higher dose. The histopathological study revealed that the application of xylene led to a significant increase in ear thickness, along with clear signs of ear edema and infiltration of inflammatory cells, as well as epidermal hyperplasia of the dermis when compared to the control group. However, treatment with the investigated compound showed a significant reduction in ear thickness and pathological differences comparable to those observed in the group treated with diclofenac. Density functional theory calculations are accomplished to gain insight into structural and spectroscopic properties. Geometry optimization, FMO, and MEP analyses are performed. Overall, the molecular docking results indicate that lapachol has potential as a COX inhibitor by binding to the active sites of both COX-1 and COX-2 enzymes.

12.
Heliyon ; 9(11): e21508, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027972

RESUMEN

In the ongoing pursuit of novel and efficient NLO materials, the potential of alkali metal-doped {6}cycloparaphenylene ({6}CPP) and methylene bridged {6} cycloparaphenylene (MB{6}CPP) nanohoops as excellent NLO candidates has been explored. The geometric, electronic, linear, and nonlinear optical properties of designed systems have been investigated theoretically. All the nanohoops demonstrated thermodynamic stability, with remarkable interaction energies reaching up to -1.39 eV (-0.0511 au). Notably, the introduction of alkali metals led to a significant reduction in the HOMO-LUMO energy gaps, with values as low as 2.92 eV, compared to 6.80 eV and 6.06 eV for undoped {6}CPP and MB{6}CPP, respectively. Moreover, the alkali metal-doped nanohoops exhibited exceptional NLO response, with the K@r6-{6}CPP complex achieving the highest first hyperpolarizability of 56,221.7 × 10-30 esu. Additionally, the frequency-dependent first hyperpolarizability values are also computed at two commonly used wavelengths of 1550 nm and 1907 nm, respectively. These findings highlight the potential of designed nanohoops as promising candidates for advanced NLO materials with high-tech applications.

13.
RSC Adv ; 13(42): 29231-29241, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37809028

RESUMEN

Formaldehyde, a volatile organic compound (VOC) released by building and decoration materials, has many applications in the chemical feedstock industry. Excessive release of formaldehyde can cause serious health issues, such as chest tightness, cough, cancer, and tissue damage. Therefore, detection of formaldehyde is required. Herein transition metal (Fe, Ni, and Pd) doped olympicene is evaluated as a gas sensor for the detection of formaldehyde. The performance of the designed electrochemical sensor is evaluated through interaction energy, natural bond orbital (NBO) non-covalent interaction (NCI), electron density differences (EDD), electrostatic potential (ESP), quantum theory of atom in molecule (QTAIM), frontier molecular orbital (FMO), and density of states (DOS) analysis. Interaction energies obtained at B3LYP-D3/def-2 TZVP level of theory shows that formaldehyde is physiosorbed over the surface of transition metal doped olympicene. The trend for interaction energy is OLY(Ni)/HCHO > OLY(Fe)/HCHO > OLY(Pd)/HCHO. The presence of non-covalent interactions is confirmed by the QTAIM and NCI analyses, while transfer of charges is confirmed by natural bond orbital analysis. The reduced density gradient (RDG) approach using noncovalent interaction (NCI) analysis demonstrates that electrostatic hydrogen bonding interactions prevail in the complexes. Recovery time is calculated to check the reusability of the sensor. This study may provide a deep insight for the designing of highly efficient electrochemical sensor against formaldehyde with transition metals doped on olympicene.

14.
ACS Omega ; 8(39): 36493-36505, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810689

RESUMEN

Hydrogen is currently considered as the best alternative for traditional fuels due to its sustainable and ecofriendly nature. Additionally, hydrogen dissociation is a critical step in almost all hydrogenation reactions, which is crucial in industrial chemical production. A cost-effective and efficient catalyst with favorable activity for this step is highly desirable. Herein, transition-metal-doped fullerene (TM@C60) complexes are designed and investigated as single-atom catalysts for the hydrogen splitting process. Interaction energy analysis (Eint) is also carried out to demonstrate the stability of designed TM@C60 metallofullerenes, which reveals that all the designed complexes have higher thermodynamic stability. Furthermore, among all the studied metallofullerenes, the best catalytic efficiency for hydrogen dissociation is seen for the Sc@C60 catalyst Ea = 0.13 eV followed by the V@C60 catalyst Ea = 0.19 eV. The hydrogen activation and dissociation processes over TM@C60 metallofullerenes is further elaborated by analyzing charge transfer via the natural bond orbital and electron density difference analyses. Additionally, quantum theory of atoms in molecule analysis is carried out to investigate the nature of interatomic interactions between hydrogen molecules and TMs@C60 metallofullerenes. Overall, results of the current study declare that the Sc@C60 catalyst can act as a low cost, highly efficient, and noble metal-free single-atom catalyst to efficiently catalyze hydrogen dissociation reaction.

15.
ACS Omega ; 8(41): 37820-37829, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867697

RESUMEN

In the pursuit of sustainable clean energy sources, the hydrogen evolution reaction (HER) has attained significant interest from the scientific community. Single-atom catalysts (SACs) are among the most promising candidates for future electrocatalysis because they possess high thermal stability, effective electrical conductivity, and excellent percentage atom utilization. In the present study, the applicability of late first-row transition metals (Fe-Zn) decorated on the magnesium oxide nanocage (TM@Mg12O12) as SACs for the HER has been studied, via density functional theory. The late first-row transition metals have been chosen as they have high abundance and are relatively low-cost. Among the studied systems, results show that the Fe@Mg12O12 SAC is the best candidate for catalyzing the HER reaction as it exhibits the lowest activation barrier for HER. Moreover, Fe@Mg12O12 shows high stability (Eint = -1.64 eV), which is essential in designing SACs to prevent aggregation of the metal. Furthermore, the results of the electronic properties' analysis showed that the HOMO-LUMO gap of the nanocage is decreased significantly upon doping of Fe (from 4.81 to 2.28 eV), indicating an increase in the conductivity of the system. This study highlights the potential application of the TM@nanocage SAC systems as effective HER catalysts.

16.
Heliyon ; 9(9): e19325, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662734

RESUMEN

Significant efforts are continuously exerted by the scientific community to explore new strategies to design materials with high nonlinear optical responses. An effective approach is to design alkalides based on Janus molecules. Herein, we present a new approach to remarkably boost the NLO response of alkalides by stacking the Janus molecules. Alkalides based on stacked Janus molecule, M-n-M' (where n = 2 & 3 while M and M' are Li/Na/K) are studied for structural, energetic, electrical, and nonlinear optical properties. The thermodynamic stability of the designed complexes is confirmed by the energetic stabilities, which range between -14.07 and -28.77 kcal/mol. The alkalide character of alkali metals-doped complexes is confirmed by the NBO charge transfer and HOMO(s) densities. The HOMO densities are located on the doped alkali metal atoms, indicating their alkalide character. The absorptions in UV-Vis and near IR region confirm the deep ultraviolet transparency of the designed complexes. The maximum first static and dynamic hyperpolarizabilities of 5.13 × 107 and 6.6 × 106 au (at 1339 nm) confirm their high NLO response, especially for K-2-M' complexes. The NLO response of alkalides based on stacked Janus molecules is 1-2 orders of magnitude higher than the alkalide based on Janus monomer. The high values of dc-Kerr and electric field-induced response e.g., max ∼107 and 108 au, respectively have been obtained. These findings suggest that our designed complexes envision a new insight into the rational design of stable high NLO performance materials.

17.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687112

RESUMEN

Switchable nonlinear optical (NLO) materials have widespread applications in electronics and optoelectronics. Thermo-switches generate many times higher NLO responses as compared to photo-switches. Herein, we have investigated the geometric, electronic, and nonlinear optical properties of spiropyranes thermochromes via DFT methods. The stabilities of close and open isomers of selected spiropyranes are investigated through relative energies. Electronic properties are studied through frontier molecular orbitals (FMOs) analysis. The lower HOMO-LUMO energy gap and lower excitation energy are observed for open isomers of spiropyranes, which imparts the large first hyperpolarizability value. The delocalization of π-electrons, asymmetric distribution and elongated conjugation system are dominant factors for high hyperpolarizability values of open isomers. For deep understanding, we also analyzed the frequency-dependent hyperpolarizability and refractive index of considered thermochromes. The NLO response increased significantly with increasing frequency. Among all those compounds, the highest refractive index value is observed for the open isomer of the spiropyran 1 (1.99 × 10-17 cm2/W). Molecular absorption analysis confirmed the electronic excitation in the open isomers compared to closed isomers. The results show that reversible thermochromic compounds act as excellent NLO molecular switches and can be used to design advanced electronics.

18.
J Mol Graph Model ; 125: 108611, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660614

RESUMEN

Traditionally, nanocones as a drug delivery material allow controlled drug delivery close to the target area while reducing the toxicity and generic accumulation associated with traditional intravenous injection methods. In the current study, density functional theory (DFT) is employed to investigate the therapeutic potential of carbon nanocone oxide (ONC) as a carrier with zidovudine drug for the treatment of human immunodeficiency virus (HIV). The electronic ground state and excited state were studied to evaluate the drug carrier potential of ONC and Zidovudine-ONC complex. The Frontier Molecular Orbitals (FMOs) and Molecular Electrostatic Potential (MEPs) revealed that the ONC carrier acts as a donor and zidovudine as an acceptor. The FMOs confirmed the interaction between drug and carrier stabilization energy by calculating chemical hardness, material softness, electronegativity, Ionization energy and electron affinity. The natural bond analysis (NBO), non-covalent interaction (NCI) and electron localization function (ELF) revealed the charge transfer between zidovudine and ONC. The density of state (DOS) and Charge Deposition analysis (CDA) provided the charge transfer. To study the excited state of zidovudine, transition density matrix (TDM), UV(Ultra-visible), IR (infrared), Raman, and NMR (Nuclear Magnetic Resonance) spectra of ONC and zidovudine-ONC complex have been plotted. The spectra showed a significant red shift in the zidovudine-ONC complex. Photoinduced electron studies (PET) showed fluorescence quenching because of the interaction between the drug and the carrier and provided a graphical explanation of the distinct excited state. All the results show that the ONC carrier has therapeutic potential as a zidovudine carrier for the treatment of Human Immunodeficiency Virus (HIV).


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Zidovudina , Portadores de Fármacos , Óxidos
19.
J Biomol Struct Dyn ; : 1-13, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37707992

RESUMEN

In recent years, there has been growing interest in exploring natural compounds with anti-inflammatory properties for potential therapeutic applications. This study focuses on investigating the anti-inflammatory potential of peshawaraquinone (PAQ), a compound isolated from Fernandoa adenophylla, which is known for its local use in pain relief. We aim to evaluate the efficacy of peshawaraquinone in both in vitro and in vivo models and gain insights into its mode of action. In the in vitro Human red blood cell (HRBC) assay, various concentrations of peshawaraquinone were tested for their ability to inhibit the hemolysis of red blood cells, a well-established indicator of anti-inflammatory activity. The results demonstrated a maximum percent inhibition of 79.69 at a concentration of 100 µM, indicating significant anti-inflammatory potential. Furthermore, the in vivo xylene-induced ear edema model was employed to assess the compound's efficacy in reducing inflammation. Xylene was topically applied to the ear to induce edema, and peshawaraquinone was administered to evaluate its inhibitory effects. The findings revealed a substantial 74.19% reduction in ear edema, accompanied by decreased ear thickness and histopathological improvements, such as inhibited cell infiltration and epidermal hyperplasia. To gain further insights into the compound's mechanism of action, density functional theory (DFT) calculations were performed to investigate its spectroscopic characteristics and geometric properties. Additionally, docking studies were conducted on key targets involved in inflammation, including COX-1 and COX-2. In conclusion, this study showcases the significant anti-inflammatory potential of peshawaraquinone, offering promising prospects for its use as a natural anti-inflammatory agent. The results from both in vitro and in vivo models, as well as the mechanistic insights gained from computational analyses, provide a solid basis for further exploration of peshawaraquinone's therapeutic applications.Communicated by Ramaswamy H. Sarma.

20.
Heliyon ; 9(8): e18264, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533989

RESUMEN

The designing of new materials having outstanding nonlinear optical (NLO) response is much needed for use in latest optics. Herein, the geometric, electronic and NLO properties of alkali and alkaline earth metals doped C6O6Li6 (alk-C6O6Li6-alkearth, alkearth = Ca, Mg, Be and alk = K, Na, Li) electrides is studied via quantum chemical approach. The interaction energies (Eint) are examined to illustrate their thermodynamic stability. The strong interaction energy of -39.99 kcal mol-1 is observed for Ca-C6O6Li6-Li electride in comparison to others. Frontier molecular orbitals (FMOs) energy gap of considered complexes is changed due to the electronic density shifting between metals and C6O6Li6 surface, which notifies the semi conducting properties of these electrides. The FMOs isodensities and natural bond orbital (NBO) charge analysis are performed to justify charge transfer between dopants and complexant. UV-Visible study also confirmed the application of these electrides as deep ultra-violet laser devices. NLO response is studied through calculation of first hyperpolarizability (ßo). The highest ßo value of 1.68 × 105 au is calculated for Mg-C6O6Li6-K electride. NLO response is further rationalized by three- and two-level models approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA