Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant ; 16(5): 865-881, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37002606

RESUMEN

Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fusarium , Pectinas , Inmunidad de la Planta , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Metilación , Pectinas/metabolismo , Proteínas Quinasas/metabolismo , Fusarium/inmunología
2.
J Genet Eng Biotechnol ; 18(1): 52, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32936364

RESUMEN

BACKGROUND: Reduced height-1 dwarfing alleles affect DELLA proteins belonging to a family of putative transcriptional regulators that modulate plant growth and development. The Arabidopsis thaliana genome encodes five DELLA proteins, whereas monocot plants, such as rice, barley, and wheat, each have a single DELLA protein. In wheat, wild-type Rht-B1a and Rht-D1a genes encode DELLA proteins and have many alleles that contain lesions. Among them, Rht-B1b and Rht-D1b are the most common mutant dwarfing alleles, which have played a key part in the creation of high-yielding wheat varieties. Despite their fundamental roles in plant biology, until now, DELLA proteins in wheat have been mainly researched regarding the phenotypic effect of defective Rht mutants on yield-related traits, without studies on the underlying mechanisms. The RHT-1 protein has yet to be detected in wheat tissues, owing to a lack of appropriate molecular tools for characterization of RHT function and protein interactions in signal transduction. This study is focused on the production of a polyclonal antibody to the wheat RHT-D1A protein. RESULTS: To generate the anti-RHT-D1A antibody, we expressed and purified soluble 6xHis-tagged RHT-D1A. The purified recombinant RHT-D1A was injected into New Zealand white rabbits to generate polyclonal antiserum. The polyclonal anti-RHT-D1A antibody was purified by ammonium sulfate precipitation, followed by affinity chromatography on protein A-agarose beads. The purified polyclonal antibody was demonstrated to be effective in immunoblotting, western blot hybridization, and immunoprecipitation. In wheat seedling extracts, the polyclonal antibody recognized a protein with a molecular mass close to the predicted molecular weight of the endogenous RHT-D1A protein. We also demonstrated that RHT-D1A disappears in response to exogenous and endogenous gibberellic acid. CONCLUSION: The purified polyclonal antibody raised against the recombinant RHT-D1A protein is sufficiently specific and sensitive and could be a useful tool for future insights into upstream and downstream components of DELLA-regulatory mechanisms in wheat plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...