Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; : e0001524, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842304

RESUMEN

Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.

2.
Methods Mol Biol ; 2470: 91-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881341

RESUMEN

Plasmodium falciparum expresses variant surface antigens on the surface of mature infected erythrocytes (IEs) for binding to various receptors on host cells (cytoadhesion) to evade host immunity. This enables IEs to sequester in the microvasculature of different organs and tissues of the host, contributing to different outcomes of disease. The in vitro study of cytoadhesion involves the use of IEs and human endothelial cells or other cell lines that express host cell receptors. To enrich for IE populations that bind to certain cell types or receptors, we describe a method for panning mature pigmented trophozoite IEs on cell lines. The method enables coculturing of IEs with cells of interest and the selection of IEs that cytoadhere for continuous culturing. The method serves as a tool for generating IEs with specific cell or cell receptor adhesion phenotypes to allow detailed studies of cytoadhesion interactions.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Adhesión Celular , Línea Celular , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
3.
Methods Mol Biol ; 2470: 515-525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881371

RESUMEN

A feature of the virulent malaria parasite, Plasmodium falciparum, is the sequestration of infected erythrocytes (IEs) to host endothelium. The IEs sequester in the microvasculature by adhesion to host cells resulting in the obstruction of blood flow and often harmful consequences in the host. IEs bind to receptors on host cells with the P. falciparum erythrocyte membrane protein 1 (PfEMP1) that is expressed on the surface of the IEs. The study of parasite cytoadhesion is essential to decipher these ligands, including types of PfEMP1 required for cytoadhesion, the receptors the IEs bind, and how they may be related to the type of malaria disease. An assay for IE adhesion to host cells, including the inhibition of cytoadhesion is described here. The assay involves the purification of IEs with knobs and binding of the IEs to a monolayer of host cells under static conditions. Compounds including proteins, antibodies or drugs can be tested for cytoadhesion inhibitory activity in the assay.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Adhesión Celular , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34035177

RESUMEN

Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.


Asunto(s)
Adhesión Bacteriana , Complemento C1/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Línea Celular , Secuencia Conservada , Humanos
5.
Sci Rep ; 10(1): 11802, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678144

RESUMEN

Plasmodium invasion of red blood cells involves malaria proteins, such as reticulocyte-binding protein homolog 5 (RH5), RH5 interacting protein (RIPR), cysteine-rich protective antigen (CyRPA), apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2), all of which are blood-stage malaria vaccine candidates. So far, vaccines containing AMA1 alone have been unsuccessful in clinical trials. However, immunization with AMA1 bound with RON2L (AMA1-RON2L) induces better protection against P. falciparum malaria in Aotus monkeys. We therefore sought to determine whether combinations of RH5, RIPR, CyRPA and AMA1-RON2L antibodies improve their biological activities and sought to develop a robust method for determination of synergy or additivity in antibody combinations. Rabbit antibodies against AMA1-RON2L, RH5, RIPR or CyRPA were tested either alone or in combinations in P. falciparum growth inhibition assay to determine Bliss' and Loewe's additivities. The AMA1-RON2L/RH5 combination consistently demonstrated an additive effect while the CyRPA/RIPR combination showed a modest synergistic effect with Hewlett's [Formula: see text] Additionally, we provide a publicly-available, online tool to aid researchers in analyzing and planning their own synergy experiments. This study supports future blood-stage vaccine development by providing a solid methodology to evaluate additive and/or synergistic (or antagonistic) effect of vaccine-induced antibodies.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Eritrocitos/parasitología , Inmunización , Inmunoglobulina G/inmunología , Estadios del Ciclo de Vida/inmunología , Vacunas contra la Malaria/inmunología , Plasmodium falciparum/crecimiento & desarrollo
6.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289187

RESUMEN

The survival of Plasmodium spp. within the host red blood cell (RBC) depends on the function of a membrane protein complex, termed the Plasmodium translocon of exported proteins (PTEX), that exports certain parasite proteins, collectively referred to as the exportome, across the parasitophorous vacuolar membrane (PVM) that encases the parasite in the host RBC cytoplasm. The core of PTEX consists of three proteins: EXP2, PTEX150, and the HSP101 ATPase; of these three proteins, only EXP2 is a membrane protein. Studying the PTEX-dependent transport of members of the exportome, we discovered that exported proteins, such as ring-infected erythrocyte surface antigen (RESA), failed to be transported in parasites in which the parasite rhoptry protein RON3 was conditionally disrupted. RON3-deficient parasites also failed to develop beyond the ring stage, and glucose uptake was significantly decreased. These findings provide evidence that RON3 influences two translocation functions, namely, transport of the parasite exportome through PTEX and the transport of glucose from the RBC cytoplasm to the parasitophorous vacuolar (PV) space where it can enter the parasite via the hexose transporter (HT) in the parasite plasma membrane.IMPORTANCE The malarial parasite within the erythrocyte is surrounded by two membranes. Plasmodium translocon of exported proteins (PTEX) in the parasite vacuolar membrane critically transports proteins from the parasite to the erythrocytic cytosol and membrane to create protein infrastructure important for virulence. The components of PTEX are stored within the dense granule, which is secreted from the parasite during invasion. We now describe a protein, RON3, from another invasion organelle, the rhoptry, that is also secreted during invasion. We find that RON3 is required for the protein transport function of the PTEX and for glucose transport from the RBC cytoplasm to the parasite, a function thought to be mediated by PTEX component EXP2.


Asunto(s)
Antígenos de Neoplasias/genética , Eliminación de Gen , Glucosa/metabolismo , Interacciones Huésped-Parásitos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Translocación Genética , Antígenos de Neoplasias/metabolismo , Transporte Biológico/genética , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Transporte de Proteínas/genética , Proteínas Protozoarias/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(5): 1063-1068, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339517

RESUMEN

Recent advances have identified a new paradigm for cerebral malaria pathogenesis in which endothelial protein C receptor (EPCR) is a major host receptor for sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain and other vital organs. The parasite adhesins that bind EPCR are members of the IE variant surface antigen family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) containing specific adhesion domains called domain cassette (DC) 8 and DC13. The binding interaction site between PfEMP1 and EPCR has been mapped by biophysical and crystallography studies using recombinant proteins. However, studies examining the interaction of native PfEMP1 on the IE surface with EPCR are few. We aimed to study binding to EPCR by IEs expressing DC8 and DC13 PfEMP1 variants whose recombinant proteins have been used in key prior functional and structural studies. IE binding to EPCR immobilized on plastic and on human brain endothelial cells was examined in static and flow adhesion assays. Unexpectedly, we found that IEs expressing the DC13 PfEMP1 variant HB3var03 or IT4var07 did not bind to EPCR on plastic and the binding of these variants to brain endothelial cells was not dependent on EPCR. IEs expressing the DC8 variant IT4var19 did bind to EPCR, but this interaction was inhibited if normal human serum or plasma was present, raising the possibility that IE-EPCR interaction may be prevented by plasma components under physiological conditions. These data highlight a discrepancy in EPCR-binding activity between PfEMP1 recombinant proteins and IEs, and indicate the critical need for further research to understand the pathophysiological significance of the PfEMP1-EPCR interaction.


Asunto(s)
Eritrocitos/parasitología , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Oligopéptidos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Adhesión Celular , Línea Celular , Receptor de Proteína C Endotelial/metabolismo , Epítopos/química , Humanos , Microcirculación , Peso Molecular , Unión Proteica , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...