Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Sci Rep ; 12(1): 6876, 2022 Apr 27.
Article En | MEDLINE | ID: mdl-35477961

High energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields. The creation of high energy density states in the laboratory consists in concentrating/depositing large amounts of energy in a reduced mass, typically solid material sample or dense plasma, over a time shorter than the typical timescales of heat conduction and hydrodynamic expansion. Laser-generated, high current-density ion beams constitute an important tool for the creation of high energy density states in the laboratory. Focusing plasma devices, such as cone-targets are necessary in order to focus and direct these intense beams towards the heating sample or dense plasma, while protecting the proton generation foil from the harsh environments typical of an integrated high-power laser experiment. A full understanding of the ion beam dynamics in focusing devices is therefore necessary in order to properly design and interpret the numerous experiments in the field. In this work, we report a detailed investigation of large-scale, kilojoule-class laser-generated ion beam dynamics in focusing devices and we demonstrate that high-brilliance ion beams compress magnetic fields to amplitudes exceeding tens of kilo-Tesla, which in turn play a dominant role in the focusing process, resulting either in a worsening or enhancement of focusing capabilities depending on the target geometry.

2.
Nat Commun ; 10(1): 2995, 2019 Jul 05.
Article En | MEDLINE | ID: mdl-31278266

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

3.
Rev Sci Instrum ; 88(7): 075103, 2017 Jul.
Article En | MEDLINE | ID: mdl-28764534

Infrared (IR) heating processes have been studied to form a deuterium layer in an inertial confinement fusion target. To understand the relationship between the IR intensity and the fuel layering time constant, we have developed a new method to assess the IR intensity during irradiation. In our method, a glass flask acting as a dummy target is filled with liquid hydrogen (LH2) and is then irradiated with 2-µm light. The IR intensity is subsequently calculated from the time constant of the LH2 evaporation rate. Although LH2 evaporation is also caused by the heat inflow from the surroundings and by the background heat, the evaporation rate due to IR heating can be accurately determined by acquiring the time constant with and without irradiation. The experimentally measured IR intensity is 0.66 mW/cm2, which agrees well with a value estimated by considering the IR photon energy balance. Our results suggest that the present method can be used to measure the IR intensity inside a cryogenic system during IR irradiation of laser fusion targets.

4.
Sci Rep ; 7: 42451, 2017 02 13.
Article En | MEDLINE | ID: mdl-28211913

Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm-2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

5.
Rev Sci Instrum ; 86(5): 053503, 2015 May.
Article En | MEDLINE | ID: mdl-26026521

A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

6.
Rev Sci Instrum ; 85(11): 11D629, 2014 Nov.
Article En | MEDLINE | ID: mdl-25430205

A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (Ne = 1.0 × 10(-6) C, Ee = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%-70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10(-7), 10(-4), 10(-5), respectively, for 2-10, 11-15, and 15-25 MeV of photon energy ranges.

7.
Rev Sci Instrum ; 85(11): 11E125, 2014 Nov.
Article En | MEDLINE | ID: mdl-25430304

A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

8.
Rev Sci Instrum ; 85(11): 11E126, 2014 Nov.
Article En | MEDLINE | ID: mdl-25430305

The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.

9.
Rev Sci Instrum ; 83(10): 10D909, 2012 Oct.
Article En | MEDLINE | ID: mdl-23126912

In the fast-ignition scheme, very hard x-rays (hereinafter referred to as γ-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be γ-rays from the target, scattered γ-rays from the experimental bay walls (γ'-rays), and neutrons generated by (γ, n) reactions in either the target vacuum chamber or the diagnostic instruments (γ-n neutrons).

10.
Rev Sci Instrum ; 83(10): 10E529, 2012 Oct.
Article En | MEDLINE | ID: mdl-23127036

Developments in measuring sound velocity of matter under ultrahigh pressure are described. We employed a time-resolved x-ray shadowgraph technique to measure the sound velocity of shock-compressed diamond and iron foils at around melt. The sound velocity significantly dropped at melting, a behavior that has been difficult to clarify by conventional measurements by subtracting particle velocity from shock velocity (u(s) - u(p)). In addition to sound velocity, other important parameters were also obtained simultaneously.

11.
Rev Sci Instrum ; 83(5): 053502, 2012 May.
Article En | MEDLINE | ID: mdl-22667617

X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. Either a visible CCD detector coupled with a CsI phosphor screen or an imaging plate can be chosen, depending on the signal intensities and exposure times. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for specific x-ray line emissions, is derived as a consequence of this work.

12.
Rev Sci Instrum ; 81(10): 10D303, 2010 Oct.
Article En | MEDLINE | ID: mdl-21033829

A custom developed (6)Li glass scintillator (APLF80+3Pr) for down-scattered neutron diagnostics in inertial confinement fusion experiments is presented. (6)Li provides an enhanced sensitivity for down-scattered neutrons in DD fusion and its experimentally observed 5-6 ns response time fulfills the requirement for down-scattered neutron detectors. A time-of-flight detector operating in the current mode using the APLF80+3Pr was designed and its feasibility observing down-scattered neutrons was demonstrated. Furthermore, a prototype design for a down-scattered neutron imaging detector was also demonstrated. This material promises viability as a future down-scattered neutron detector for the National Ignition Facility.

13.
Phys Rev Lett ; 102(23): 235002, 2009 Jun 12.
Article En | MEDLINE | ID: mdl-19658942

We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.

14.
Rev Sci Instrum ; 79(10): 10E916, 2008 Oct.
Article En | MEDLINE | ID: mdl-19044571

Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.

15.
Phys Rev Lett ; 100(1): 015003, 2008 Jan 11.
Article En | MEDLINE | ID: mdl-18232779

Metal foil targets were irradiated with 1 mum wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10;{19} W cm;{-2}, giving values of both Ilambda;{2} and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K_{alpha} emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with Ilambda;{2} and is independent of pulse duration. Two-dimensional particle-in-cell simulations reproduce these results, indicating that it is a fundamental property of the laser-plasma interaction.

16.
Phys Rev Lett ; 98(4): 045002, 2007 Jan 26.
Article En | MEDLINE | ID: mdl-17358782

The growth rate of the ablative Rayleigh-Taylor instability is approximated by gamma = square root[kg/(1 + kL)] - beta km/rho(a), where k is the perturbation wave number, g the gravity, L the density scale length, m the mass ablation rate, and rho(a) the peak target density. The coefficient beta was evaluated for the first time by measuring all quantities of this formula except for L, which was taken from the simulation. Although the experimental value of beta = 1.2+/-0.7 at short perturbation wavelengths is in reasonably good agreement with the theoretical prediction of beta = 1.7, it is found to be larger than the prediction at long wavelengths.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(4 Pt 2A): 045401, 2002 Apr.
Article En | MEDLINE | ID: mdl-12005913

We present experimental results on the perturbation transfer of laser irradiated planar foils. Perturbed polystyrene foils were irradiated directly by laser at intensity of 6 x 10(13) W/cm(2). We measured perturbations on the foils by side-on x-ray backlighting technique. Perturbations on the rear surface due to the rippled shock front were observed just after the shock breakout. We also observed feed-through of perturbations on the laser-irradiated surface that grows due to the Rayleigh-Taylor instability.

18.
Phys Rev Lett ; 88(14): 145003, 2002 Apr 08.
Article En | MEDLINE | ID: mdl-11955155

One of the most important quantities to be measured for better understanding of the ablative Rayleigh-Taylor (RT) instability is the growth rate in the short wavelength region at which the RT instability is significantly reduced. The short wavelength ( 4.7-12 microm) RT growth rates for direct-drive targets were measured for the first time by utilizing the innovated moiré interferometry [M. Matsuoka et al., Rev. Sci. Instrum. 70, 637 (1999)]. These growth rates were reasonably well reproduced by the simulation that solves the Fokker-Planck equation for nonlocal heat transport.

19.
Phys Rev Lett ; 88(4): 045002, 2002 Jan 28.
Article En | MEDLINE | ID: mdl-11801129

The time-dependent gradient structure of a laser-compressed, high-energy-density plasma has been determined using a method based on the simultaneous analysis of time-resolved x-ray monochromatic images and x-ray line spectra from Ar-doped D2 implosion cores. The analysis self-consistently determines the temperature and density gradients that yield the best fits to the spatial-emissivity profiles and spectral line shapes. This measurement is important for understanding the spectra formation and plasma dynamics associated with the implosion process. In addition, since the results are independent of hydrodynamic simulations, they are also important for comparison with fluid-dynamic models.

20.
Oncology ; 60(4): 346-54, 2001.
Article En | MEDLINE | ID: mdl-11408803

p16, cyclin D1 and retinoblastoma protein (pRB) regulate G1 to S transition and are commonly targeted in various cancers. However, few studies have simultaneously examined all components of the p16/cyclin D1/pRB pathway (RB pathway) in hepatocellular carcinoma (HCC). To clarify the role of the disruption of the RB pathway in HCC, we analyzed p16, pRB and cyclin D1 in 47 HCCs. Inactivation of p16 was detected in 30 of 47 HCCs (64%) by Western blot analysis and significantly correlated with hypermethylation of the promoter of this gene. pRB expression was found to be absent in 13 of 47 HCCs (28%) by immunohistochemistry. We found that 38 of 47 HCCs (81%) contained at least one inactivation in either pRB or p16. Furthermore, there was a significant inverse correlation between p16 and pRB inactivation (p = 0.041). Overexpression of cyclin D1 was detected in 5 of 47 HCCs (11%) by immunohistochemistry. The cases with cyclin D1 overexpression exhibited an advanced clinicopathological appearance and also contained inactivation of pRB and/or p16. These findings suggest that inactivation of pRB and/or p16 is a major event in human hepatocarcinogenesis, while cyclin D1 overexpression may confer additional growth advantages to the tumor in addition to pRB and/or p16 inactivation in HCC.


Carcinoma, Hepatocellular/metabolism , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Liver Neoplasms/metabolism , Retinoblastoma Protein/metabolism , Adult , Aged , Carcinoma, Hepatocellular/pathology , Cell Nucleus/pathology , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA, Neoplasm/analysis , Female , Gene Deletion , Humans , Immunoenzyme Techniques , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Sequence Analysis, DNA
...