Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
BMC Complement Med Ther ; 24(1): 157, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38609946

BACKGROUND: Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS: The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS: Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION: It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.


Anti-Infective Agents , Bacterial Infections , Citrus , Oils, Volatile , Antioxidants/pharmacology , Hydrogen Peroxide , Molecular Docking Simulation , Oils, Volatile/pharmacology , Anti-Infective Agents/pharmacology , Flowers
2.
Gels ; 9(3)2023 Mar 21.
Article En | MEDLINE | ID: mdl-36975701

Prevalence of oral infections in diabetic patients is a health challenge due to persistent hyperglycemia. However, despite great concerns, limited treatment options are available. We therefore aimed to develop nanoemulsion gel (NEG) for oral bacterial infections based on essential oils. Clove and cinnamon essential oils based nanoemulgel were prepared and characterized. Various physicochemical parameters of optimized formulation including viscosity (65311 mPa·S), spreadability (36 g·cm/s), and mucoadhesive strength 42.87 N/cm2) were within prescribed limits. The drug contents of the NEG were 94.38 ± 1.12% (cinnamaldehyde) and 92.96 ± 2.08% (clove oil). A significant concentration of clove (73.9%) and cinnamon essential oil (71.2 %) was released from a polymer matrix of the NEG till 24 h. The ex vivo goat buccal mucosa permeation profile revealed a significant (52.7-54.2%) permeation of major constituents which occurred after 24 h. When subjected to antimicrobial testing, significant inhibition was observed for several clinical strains, namely Staphylococcus aureus (19 mm), Staphylococcus epidermidis (19 mm), and Pseudomonas aeruginosa (4 mm), as well as against Bacillus chungangensis (2 mm), whereas no inhibition was detected for Bacillus paramycoides and Paenibacillus dendritiformis when NEG was utilized. Likewise promising antifungal (Candida albicans) and antiquorum sensing activities were observed. It was therefore concluded that cinnamon and clove oil-based NEG formulation presented significant antibacterial-, antifungal, and antiquorum sensing activities.

3.
Molecules ; 27(19)2022 Oct 09.
Article En | MEDLINE | ID: mdl-36235251

Diabetes mellitus (DM) is a global health concern that is associated with several micro- and macrovascular complications. We evaluated several important medicinal plant constituents, including polyphenols and flavonoids, for α-glucosidase inhibition, AGEs' inhibitory activities using oxidative and no-oxidative assays, the inhibition of protein cross link formation, 15-lipoxydenase inhibition and molecular docking. The molecular docking studies showed high binding energies of flavonoids for transcriptional regulars 1IK3, 3TOP and 4F5S. In the α-glucosidase inhibition assay, a significant inhibition was noted for quercitrin (IC50 7.6 µg/mL) and gallic acid (IC50 8.2 µg/mL). In the AGEs inhibition assays, quercetin showed significant results in both non-oxidative and (IC50 0.04 mg/mL) and oxidative assays (IC50 0.051 mg/mL). Furthermore, quercitrin showed inhibitory activity in the non-oxidative (IC50 0.05 mg/mL) and oxidative assays (IC50 0.34 mg/mL). A significant inhibition of protein cross link formation was observed by SDS-PAGE analysis. Quercitrin (65%) and quercetin (62%) showed significant inhibition of 15-lipoxygenase. It was thus concluded that flavonoids and other polyphenols present in plant extracts can be effective in management of diabetes and allied co-morbidities.


Diabetes Mellitus , Hypoglycemic Agents , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Arachidonate 15-Lipoxygenase , Flavonoids/pharmacology , Gallic Acid/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Quercetin/pharmacology , alpha-Glucosidases/metabolism
4.
Pak J Pharm Sci ; 33(5(Special)): 2461-2469, 2020 Sep.
Article En | MEDLINE | ID: mdl-33832891

Euphorbia nivulia a locally occurring plant species possesses antiseptic, analgesic and anti-inflammatory properties and is ethnopharmacologically used in various ailments like skin, ear disorders, boils, and worm infestation. Preliminary phytochemical screening showed presence of flavonoids, polyphenolics, glycosides, alkaloids, tannins and triterpenoids in (70% aqueous-ethanolic) Euphorbia nivulia crude extract (En cr) and its four fractions, i.e., hexane fraction (En hex), butanol fraction (En bt), chloroform fraction (En ch), and aqueous fraction (En aq). In current study, Agar well diffusion and time-kill kinetic assays were performed for antimicrobial activity. 300 mg/ml concentration showed maximum inhibitory zone. Highest zone of inhibition (15.5mm) was demonstrated by En ch fraction against Proteus mirabilis. Staphyllococcus aureus was the most sensitive bacteria against whom all fractions except En aq fraction were active. Maximum MIC (15.3 mg/ml) was shown by En ch fraction against Proteus mirabilis. Similarly, En ch fraction showed (15.1 mg/ml) remarkable MIC against Candida albicans. Significant higher antibacterial and antifungal activity was revealed in high concentration. Time-kill kinetics studies revealed bacteriostatic action. Noteworthy antimicrobial activity may be due to bioactive compounds of extract which may be a potential antibacterial and antifungal agent.


Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Euphorbia , Fungi/drug effects , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Aspergillus/drug effects , Aspergillus/growth & development , Bacteria/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Euphorbia/chemistry , Fungi/growth & development , Kinetics , Microbial Sensitivity Tests , Phytochemicals/isolation & purification , Plant Components, Aerial , Plant Extracts/isolation & purification , Proteus mirabilis/drug effects , Proteus mirabilis/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
...