Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(2): 1189-1203, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705960

RESUMEN

Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.


Asunto(s)
Antibacterianos , Biopelículas , Paenibacillus , Polisacárido Liasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Polisacárido Liasas/metabolismo , Polisacárido Liasas/genética , Antibacterianos/farmacología , Paenibacillus/genética , Paenibacillus/enzimología , Paenibacillus/efectos de los fármacos , Gentamicinas/farmacología , Amicacina/farmacología , Fermentación , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Alginatos/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838158

RESUMEN

Cronobacter sakazakii is an opportunistic foodborne pathogen of concern for foods having low water activity such as powdered infant formula (PIF). Its survival under desiccated stress can be attributed to its ability to adapt effectively to many different environmental stresses. Due to the high risk to neonates and its sporadic outbreaks in PIF, C. sakazakii received great attention among the scientific community, food industry and health care providers. There are many extrinsic and intrinsic factors that affect C. sakazakii survival in low-moisture foods. Moreover, short- or long-term pre-exposure to sub-lethal physiological stresses which are commonly encountered in food processing environments are reported to affect the thermal resistance of C. sakazakii. Additionally, acclimation to these stresses may render C. sakazakii resistance to antibiotics and other antimicrobial agents. This article reviews the factors and the strategies responsible for the survival and persistence of C. sakazakii in PIF. Particularly, studies focused on the influence of various factors on thermal resistance, antibiotic or antimicrobial resistance, virulence potential and stress-associated gene expression are reviewed.

3.
J Appl Microbiol ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36626728

RESUMEN

AIM: In the present study, malic acid in combination with sodium hypochlorite is evaluated for eradication of biofilms formed by Cronobacter sakazakii strains individually and in a cocktail on different abiotic surfaces. METHOD AND RESULTS: The biofilm formation by five strains of C. sakazakii and their cocktail culture on different substrates was studied in Tryptone Soy Broth (TSB) and reconstituted Powdered Infant Formula (PIF). Further, the effect of temperature (4, 27, 37 and 50°C) and contact time (10, 20, 30, 40, 50 and 60 min) on antibiofilm potential of test solution (0.0625 mol l-1 malic acid and 0.00004 mol l-1 sodium hypochlorite) against biofilm formed by C. sakazakii cocktail culture was investigated on these surfaces. The effect was evaluated in terms of viable cell count and biofilm texture using scanning electron microscopy (SEM). Principal Component Analysis (PCA) revealed that the maximum biofilm reduction was observed for stainless steel at 4°C after 60 min of contact whereas at 25, 37 and 50°C, maximum biofilm reduction was observed for polycarbonate. For glass and polyurethane, maximum log reductions were observed at 50°C. The SEM images revealed cell surface deformation and disruption in biofilms after treatment with the test solution. CONCLUSIONS: The antibiofilm potential was observed to be greatly affected by contact time and temperature. These results indicated that the combination of malic acid NaOCl can effectively kill and remove C. sakazakii biofilms from food contact surfaces and enteral feeding tubes.

4.
J Appl Microbiol ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36626731

RESUMEN

AIM: In the present study, malic acid in combination with sodium hypochlorite is evaluated for eradication of biofilms formed by Cronobacter sakazakii strains individually and in a cocktail on different abiotic surfaces. METHOD AND RESULTS: The biofilm formation by five strains of C. sakazakii and their cocktail culture on different substrates was studied in Tryptone Soy Broth (TSB) and reconstituted Powdered Infant Formula (PIF). Further, the effect of temperature (4, 27, 37 and 50°C) and contact time (10, 20, 30, 40, 50 and 60 min) on antibiofilm potential of test solution (0.0625 mol l-1 malic acid and 0.00004 mol l-1 sodium hypochlorite) against biofilm formed by C. sakazakii cocktail culture was investigated on these surfaces. The effect was evaluated in terms of viable cell count and biofilm texture using scanning electron microscopy (SEM). Principal Component Analysis (PCA) revealed that the maximum biofilm reduction was observed for stainless steel at 4°C after 60 min of contact whereas at 25, 37 and 50°C, maximum biofilm reduction was observed for polycarbonate. For glass and polyurethane, maximum log reductions were observed at 50°C. The SEM images revealed cell surface deformation and disruption in biofilms after treatment with the test solution. CONCLUSIONS: The antibiofilm potential was observed to be greatly affected by contact time and temperature. These results indicated that the combination of malic acid NaOCl can effectively kill and remove C. sakazakii biofilms from food contact surfaces and enteral feeding tubes.

5.
Appl Biochem Biotechnol ; 171(8): 2040-52, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24022778

RESUMEN

The purification and characterization of intracellular tyrosine phenol lyase from Citrobacter freundii has been carried out. The enzyme was purified 35-fold to homogeneity by ammonium sulphate precipitation and hydrophobic interaction chromatography. Its subunit molecular weight was found to be 52 kDa on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified tyrosine phenol lyase showed maximum activity in borate buffer (0.05 M at pH 8.5) at 45 °C after 20 min of incubation. The Km and Vmax values of purified enzyme were found to be 0.446 mm and 0.342 mM/min/mg. This enzyme exhibits t1/2 of 10, 52 and 130 min at 55, 45 and 35 °C, respectively. The N-terminal amino acid sequence was determined as MET-ASN-TYR-PRO-ALA-GLU-PRO-PHE-ARG-ILETRP- TRP-VAL-GLY.


Asunto(s)
Citrobacter freundii/enzimología , Tirosina Fenol-Liasa/aislamiento & purificación , Secuencia de Aminoácidos , Dipéptidos/química , Cinética , Peso Molecular , Tirosina Fenol-Liasa/química
6.
Acta Microbiol Immunol Hung ; 60(2): 145-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23827746

RESUMEN

The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Citrobacter freundii/enzimología , Oxígeno/metabolismo , Parafina/análisis , Tirosina Fenol-Liasa/metabolismo , Proteínas Bacterianas/genética , Técnicas de Cultivo Celular por Lotes/instrumentación , Citrobacter freundii/genética , Fermentación , Tirosina Fenol-Liasa/genética
7.
Acta Microbiol Immunol Hung ; 58(3): 189-200, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21983320

RESUMEN

The cheese whey, a by-product of dairy industry proved to be an attractive substrate for production of ß-carotene. The ß-carotene production from Mucor azygosporus MTCC 414 by using deproteinized waste whey filtrate under submerged fermentation was investigated. Various fermentation variables, such as lactose content in whey, initial pH, production temperature, incubation time, and carbon and nitrogen sources played significant role on ß-carotene production. Maximum ß-carotene production (385 µg/g dcw) was obtained with the whey (pH 5.5) containing 3.5% (w/v) lactose supplemented with soluble starch at (1.0%, w/v) at 30°C after a 5 days incubation. Moreover, unlike other microorganisms which utilize pre-hydrolyzed lactose, this Mucor azygosporus MTCC 414 was found to be capable of utilizing unhydrolyzed lactose present in the whey.


Asunto(s)
Productos Lácteos/análisis , Fermentación , Mucor/metabolismo , beta Caroteno/biosíntesis , Medios de Cultivo/metabolismo , Concentración de Iones de Hidrógeno , Lactosa/análisis , Lactosa/metabolismo , Nitrógeno/análisis , Nitrógeno/metabolismo , Temperatura
8.
Enzyme Res ; 2011: 919386, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603222

RESUMEN

Selective production of fragrance fatty acid ester from isopropanol and acetic acid has been achieved using silica-immobilized lipase of Bacillus cereus MTCC 8372. A purified thermoalkalophilic extracellular lipase was immobilized by adsorption onto the silica. The effects of various parameters like molar ratio of substrates (isopropanol and acetic acid; 25 to 100 mM), concentration of biocatalyst (25-125 mg/mL), reaction time, reaction temperature, organic solvents, molecular sieves, and initial water activity were studied for optimal ester synthesis. Under optimized conditions, 66.0 mM of isopropyl acetate was produced when isopropanol and acetic acid were used at 100 mM: 75 mM in 9 h at 55°C in n-heptane under continuous shaking (160 rpm) using bound lipase (25 mg). Addition of molecular sieves (3 Å × 1.5 mm) resulted in a marked increase in ester synthesis (73.0 mM). Ester synthesis was enhanced by water activity associated with pre-equilibrated saturated salt solution of LiCl. The immobilized lipase retained more than 50% of its activity after the 6th cycle of reuse.

9.
Bioresour Technol ; 102(2): 2083-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20728346

RESUMEN

The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of L-asparaginase by Bacillus brevis was evaluated at 4% (v/v) concentration. All of the three oxygen-vectors were found to exhibit a stimulatory effect on L-asparaginase activity. Liquid paraffin at 6% (v/v) resulted in 34% increase in the L-asparaginase activity accompanied by a 48% increase in the production of cell mass at a 10 L scale. This improvement in L-asparaginase activity and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% through out the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhancement in cell mass production and l-asparaginase activity.


Asunto(s)
Alcanos/farmacología , Asparaginasa/biosíntesis , Bacillus/enzimología , Bacillus/crecimiento & desarrollo , Aceite Mineral/farmacología , Oxígeno/farmacología , Aceites de Silicona/farmacología , Bacillus/efectos de los fármacos , Biomasa , Fermentación/efectos de los fármacos , Agua/farmacología
10.
Bioresour Technol ; 102(3): 2177-84, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21147526

RESUMEN

Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of V(max), maximum reaction rate, (0.123 unit/mg), k(m), Michaelis constant (7.429 mol/L) and E(a), energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45°C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles.


Asunto(s)
Geles/química , Nanoestructuras/química , Polímeros/química , Saccharomyces cerevisiae/enzimología , beta-Fructofuranosidasa/química , Activación Enzimática , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Cinética , Nanoestructuras/ultraestructura , Unión Proteica
11.
Bioresour Technol ; 100(5): 1840-6, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18993058

RESUMEN

The process optimization using technological combinations for the production of tyrosine phenol lyase by Citrobacter freundii MTCC 2424 has been carried out in this study. The maximum production of tyrosine phenol lyase (0.15 U) was obtained by culturing C. freundii MTCC 2424 in a medium containing (g/l) meat extract 5.0, yeast extract 5.0, peptone 2.5, and l-tyrosine 1.0 at 25 degrees C for 16 h in a temperature controlled orbital shaker. A 2.5-fold increase in enzyme activity with 1.3-fold decrease in the cost of enzyme production (in terms of media components) was achieved by using different technological combinations. The process optimization using technological combinations allowed quick optimization of large number of variables, which helps in designing of suitable fermentation conditions for the cost-effective production of tyrosine phenol lyase. Moreover, this also provides information for balancing the nutrient concentration with minimum experimentation.


Asunto(s)
Biotecnología/métodos , Citrobacter freundii/metabolismo , Tirosina Fenol-Liasa/biosíntesis , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Cloruro de Sodio/metabolismo , Temperatura
12.
Crit Rev Oncol Hematol ; 61(3): 208-21, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17011787

RESUMEN

L-Asparaginase is an effective antineoplastic agent, used in the acute lymphoblastic leukemia chemotherapy. It has been an integral part of combination chemotherapy protocols of pediatric acute lymphoblastic leukemia for almost 3 decades. The potential of L-asparaginase as a drug of leukemia has been a matter of discussion due to the high rate of allergic reactions exhibited by the patients receiving the medication of this enzyme drug. Frequent need of intramuscular injection has been another disadvantage associated with the native preparation. However, of late these clinical complications seem to have been addressed by modified versions of L-asparaginase. PEG-L-asparaginase proves to be most effective in this regard. It becomes important to discuss the efficacy of L-asparaginase as an antileukemic drug vis-a-vis these disadvantages. In this review, an attempt has been made to critically evaluate the pharmacological and clinical potential of various preparations of L-asparaginase as a drug. Advantages of PEG-L-asparaginase over native preparations and historical developments of therapy with l-asparaginase have also been outlined in the review below.


Asunto(s)
Antineoplásicos/farmacología , Asparaginasa/farmacología , Polietilenglicoles/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacocinética , Asparaginasa/química , Asparaginasa/aislamiento & purificación , Asparaginasa/farmacocinética , Ensayos Clínicos como Asunto , Humanos , Polietilenglicoles/química , Polietilenglicoles/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...