Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Bull Cancer ; 106(1): 24-36, 2019 Jan.
Artículo en Francés | MEDLINE | ID: mdl-30554635

RESUMEN

Metastasis in cancer patients is often associated with a poor prognosis. However, we still have limited knowledge of the underlying molecular mechanisms, due to the great complexity of the biological processes involved in the formation of metastases. During tumor progression, the metastatic cells acquire genetic and epigenetic modifications allowing them to adapt to the various environments they will encounter (in the circulation and the host microenvironment) and to resist to the antitumor therapeutic agents. In this review, we expose the current knowledge on the biology of metastases. We summarize the different signaling pathways involved in the successive steps of the metastatic cascade, highlighting recent advances in the field to better understand the molecular mechanisms leading to metastasis formation. In addition, our understanding of metastatic progression has made great progress with the recent advances in high throughput sequencing techniques. We expose data from genomic analyzes of metastases. These studies allowed the identification of alterations acquired exclusively in distant metastases. They highlight the emergence of alterations offering new targeted therapeutic options for cancer patients and they provide new insight into the mechanisms of treatment resistance at the origin of metastatic relapses. Finally, we present latest clinical trials based on the genomic profiles of metastases, initiated in recent years, and we discuss their potential impact in personalized medicine.


Asunto(s)
Metástasis de la Neoplasia/genética , Progresión de la Enfermedad , Epigénesis Genética , Genómica , Humanos , Medicina de Precisión , Transducción de Señal
4.
J Exp Clin Cancer Res ; 37(1): 281, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30477537

RESUMEN

BACKGROUND: Kindlin-1, - 2, and - 3 are the three members of the Kindlin family. They are best known as regulators of integrin functions, contributing to fundamental biological processes such as cell survival, adhesion and migration. Their deregulation leads to diverse pathologies including a broad range of cancers in which both, tumor-promoting and tumor-inhibiting functions have been described. METHODS: To better characterize Kindlins implication in breast cancer, in vitro experiments were performed in a series of cancer cell lines. We first assessed their expression profiles and subcellular distributions. Then, their involvement in breast cancer cell morphology, migration and invasion was verified by examining phenotypic changes induced by the depletion of either isoforms using RNA interference. An expression study was performed in a series of breast cancer patient derived xenografts (n = 58) to define the epithelial and stromal contribution of each Kindlin. Finally, we analyzed the expression levels of the three Kindlins in a large series of human breast tumors, at the RNA (n = 438) and protein (n = 129) levels and we evaluated their correlation with the clinical outcome. RESULTS: We determined that Kindlin-1 and Kindlin-2, but not Kindlin-3, were expressed in breast tumor cells. We uncovered the compensatory roles of Kindlin-1 and -2 in focal adhesion dynamics and cell motility. Remarkably, Kindlin-2 had a predominant effect on cell spreading and Kindlin-1 on cell invasion. In line with these experimental observations, Kindlin-1 overexpression was associated with a worse patients' outcome. Notably, Kindlin-3, expressed by tumor infiltrating leukocytes, also correlated with a poor prognosis of breast cancer patients. CONCLUSION: This study demonstrates that each one of the Kindlin family members has a different expression profile emphasizing their redundant and complementary roles in breast tumor cells. We highlight the specific link between Kindlin-1 and breast cancer progression. In addition, Kindlin-3 overexpression in the tumor microenvironment is associated with more aggressive breast tumors. These results suggest that Kindlins play distinctive roles in breast cancer. Kindlins may be useful in identifying breast cancer patients with a worst prognosis and may offer new avenues for therapeutic intervention against cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Pronóstico , Transfección
5.
BMC Biol ; 16(1): 109, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30285739

RESUMEN

BACKGROUND: The WW domain-containing oxidoreductase (WWOX) gene, frequently altered in breast cancer, encodes a tumor suppressor whose function is mediated through its interactions with cancer-related proteins, such as the pro-apoptotic protein p73α. RESULTS: To better understand the involvement of WWOX in breast tumorigenesis, we performed a yeast two-hybrid screen and co-immunoprecipitation assays to identify novel partners of this protein. We characterized the vesicular overexpressed in cancer pro-survival protein 1 (VOPP1) as a new regulator of WWOX. In breast cancer cells, VOPP1 sequestrates WWOX in lysosomes, impairs its ability to associate with p73α, and inhibits WWOX-dependent apoptosis. Overexpressed VOPP1 potentiates cellular transformation and enhances the growth of transplanted tumors in vivo. VOPP1 is overexpressed in breast tumors, especially in tumors that retain WWOX. Moreover, increased expression of VOPP1 is associated with reduced survival of patients with WWOX-positive, but not with WWOX-negative, tumors. CONCLUSIONS: These findings emphasize the importance of the sequestration of WWOX by VOPP1 in addition to WWOX loss in breast tumors and define VOPP1 as a novel oncogene promoting breast carcinogenesis by inhibiting the anti-tumoral effect of WWOX.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo
6.
Nat Cell Biol ; 20(3): 296-306, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29403038

RESUMEN

Metastases account for 90% of cancer-related deaths; thus, it is vital to understand the biology of tumour dissemination. Here, we collected and monitored >50 patient specimens ex vivo to investigate the cell biology of colorectal cancer (CRC) metastatic spread to the peritoneum. This reveals an unpredicted mode of dissemination. Large clusters of cancer epithelial cells displaying a robust outward apical pole, which we termed tumour spheres with inverted polarity (TSIPs), were observed throughout the process of dissemination. TSIPs form and propagate through the collective apical budding of hypermethylated CRCs downstream of canonical and non-canonical transforming growth factor-ß signalling. TSIPs maintain their apical-out topology and use actomyosin contractility to collectively invade three-dimensional extracellular matrices. TSIPs invade paired patient peritoneum explants, initiate metastases in mice xenograft models and correlate with adverse patient prognosis. Thus, despite their epithelial architecture and inverted topology TSIPs seem to drive the metastatic spread of hypermethylated CRCs.


Asunto(s)
Biomarcadores de Tumor/genética , Movimiento Celular , Polaridad Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Metilación de ADN , Células Epiteliales/patología , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/secundario , Animales , Biomarcadores de Tumor/metabolismo , Células CACO-2 , Neoplasias Colorrectales/metabolismo , Células Epiteliales/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Neoplasias Peritoneales/metabolismo , Fenotipo , Estudios Prospectivos , Transducción de Señal , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...