Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(22): 4637-4642, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38805214

RESUMEN

Here we report an efficient route for synthesizing strigolactones (SLs) and their derivatives. Our method relies on a palladium-catalyzed oxidative carbonylation/carbocyclization/carbonylation/alkoxylation cascade reaction, which involves the formation of three new C-C bonds and a new C-O bond while cleaving one C(sp3)-H bond in a single step. With our versatile synthetic strategy, both naturally occurring and artificial SLs were prepared.

2.
Org Lett ; 26(12): 2430-2434, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38502799

RESUMEN

A highly efficient dehydrogenative carbonylative esterification of allenoic acids using Pd-catalysis was developed, providing a novel approach to synthesizing esterified γ-butyrolactone derivatives with consistently good to excellent results demonstrated across over 50 examples. Additionally, we used a heterogeneous catalyst known as Pd-AmP-MCF and harnessed biomimetic-aerobic-oxidation conditions to facilitate the practical execution of this reaction. Furthermore, our detailed study of γ-butyrolactone products highlighted their potential in synthesizing bioactive compounds.

3.
Angew Chem Int Ed Engl ; 62(50): e202314512, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37899308

RESUMEN

Classical Crabbé type SN 2' substitutions of propargylic substrates has served as one of the standard methods for the synthesis of allenes. However, the stereospecific version of this transformation often requires either stoichiometric amounts of organocopper reagents or special functional groups on the substrates, and the chirality transfer efficiency is also capricious. Herein, we report a sustainable methodology for the synthesis of diverse 1,3-di and tri-substituted allenes by using a simple and cheap cellulose supported heterogeneous nanocopper catalyst (MCC-Amp-Cu(I/II)). This approach represents the first example of heterogeneous catalysis for the synthesis of chiral allenes. High yields and excellent enantiospecificity (up to 97 % yield, 99 % ee) were achieved for a wide range of di- and tri-substituted allenes bearing various functional groups. It is worth noting that the applied heterogeneous catalyst could be recycled at least 5 times without any reduced reactivity. To demonstrate the synthetic utility of the developed protocol, we have applied it to the total synthesis of several chiral allenic natural products.

4.
ACS Catal ; 13(15): 10418-10424, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37560186

RESUMEN

Herein, we describe efficient nanogold-catalyzed cycloisomerization reactions of alkynoic acids and allenynamides to enol lactones and dihydropyrroles, respectively (the latter via an Alder-ene reaction). The gold nanoparticles were immobilized on thiol-functionalized microcrystalline cellulose and characterized by electron microscopy (HAADF-STEM) and by XPS. The thiol-stabilized gold nanoparticles (Au0) were obtained in the size range 1.5-6 nm at the cellulose surface. The robust and sustainable cellulose-supported gold nanocatalyst can be recycled for multiple cycles without losing activity.

5.
RSC Adv ; 13(29): 19975-19980, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37404321

RESUMEN

Subtilisin integrated artificial plant-cell walls (APCWs) were fabricated by self-assembly using cellulose or nanocellulose as the main component. The resulting APCW catalysts are excellent heterogeneous catalysts for the asymmetric synthesis of (S)-amides. This was demonstrated by the APCW-catalyzed kinetic resolution of several racemic primary amines to give the corresponding (S)-amides in high yields with excellent enantioselectivity. The APCW catalyst can be recycled for multiple reaction cycles without loss of enantioselectivity. The assembled APCW catalyst was also able to cooperate with a homogeneous organoruthenium complex, which allowed for the co-catalytic dynamic kinetic resolution (DKR) of a racemic primary amine to give the corresponding (S)-amide in high yield. The APCW/Ru co-catalysis constitutes the first examples of DKR of chiral primary amines when subtilisin is used as a co-catalyst.

6.
Chemistry ; 29(24): e202203950, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36719323

RESUMEN

A highly efficient regio- and stereoselective heterogeneous palladium-catalyzed hydroboration reaction of enallenes was developed. Nanopalladium immobilized on microcrystalline cellulose (MCC) was successfully employed as an efficient catalyst for the enallene hydroboration reaction. The nanopalladium particles were shown by HAADF-STEM to have an average size of 2.4 nm. The cellulose-supported palladium catalyst exhibits high stability and provides vinyl boron products in good to high isolated yields (up to 90 %). The nanopalladium catalyst can be efficiently recycled and it was demonstrated that the catalyst can be used in 7 runs with a maintained high yield (>80 %). The vinylboron compounds prepared from enallenes are important synthetic intermediates that can be used in various organic synthetic transformations.

7.
Org Lett ; 25(1): 120-124, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36599130

RESUMEN

Structurally diverse 1,3-dienes are valuable building blocks in organic synthesis. Herein we report the iron-catalyzed coupling between α-allenyl esters and Grignard reagents, which provides a fast and practical approach to a variety of complex substituted 1,3-dienes. The reaction involves an inexpensive iron catalyst, mild reaction conditions, and provides easy scale up.


Asunto(s)
Ésteres , Hierro , Indicadores y Reactivos , Polienos , Catálisis
8.
Chemistry ; 29(3): e202203130, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36250587

RESUMEN

A novel iron-catalyzed borylation of propargylic acetates leading to allenylboronates has been developed. The method allows the preparation of a variety of di-, tri- and tetrasubstituted allenylboronates at room temperature with good functional group compatibility. Stereochemical studies show that an anti-SN 2' displacement of acetate by boron occurs; this also allows transfer of chirality to yield enantiomerically enriched allenylboronates. The synthetic utility of this protocol was further substantiated by transformations of the obtained allenylboronates including oxidation and propargylation.


Asunto(s)
Boro , Hierro , Catálisis , Estereoisomerismo , Oxidación-Reducción
10.
Angew Chem Int Ed Engl ; 61(49): e202212131, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36222322

RESUMEN

Herein, we report an electrochemical oxidative palladium-catalyzed carbonylation-carbocyclization of enallenols to afford γ-lactones and spirolactones, which proceeds with excellent chemoselectivity. Interestingly, electrocatalysis was found to have an accelerating effect on the rate of the tandem process, leading to a more efficient reaction than that under chemical redox conditions.

11.
ACS Catal ; 12(3): 1791-1796, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35154848

RESUMEN

Herein, we describe an efficient nanocopper-catalyzed Alder-ene reaction of allenynamides. The copper nanoparticles were immobilized on amino-functionalized microcrystalline cellulose. A solvent-controlled chemoselectivity of the reaction was observed, leading to the chemodivergent synthesis of pyrrolines (2,5-dihydropyrroles) and pyrroles. The heterogeneous copper catalyst exhibits high efficiency and good recyclability in the Alder-ene reaction, constituting a highly attractive catalytic system from an economical and environmental point of view.

12.
Chem Commun (Camb) ; 57(70): 8814-8817, 2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382975

RESUMEN

The assembly of cellulose-based artificial plant cell wall (APCW) structures that contain different types of catalysts is a powerful strategy for the development of cascade reactions. Here we disclose an APCW catalytic system containing a lipase enzyme and nanopalladium particles that transform a racemic amine into the corresponding enantiomerically pure amide in high yield via a dynamic kinetic resolution.

13.
Chemistry ; 27(63): 15623-15627, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34428339

RESUMEN

Herein we report on the development and application of chemoenzymatic Dynamic Kinetic Asymmetric Transformation (DYKAT) of α-substituted ß-hydroxyketones (ß-HKs), using Candida antartica lipase B (CALB) as transesterification catalyst and a ruthenium complex as epimerization catalyst. An operationally simple protocol allows for an efficient preparation of highly enantiomerically enriched α-substituted ß-oxoacetates. The products were obtained in yields up to 95 % with good diastereomeric ratios.


Asunto(s)
Rutenio , Catálisis , Proteínas Fúngicas , Cinética , Lipasa/metabolismo , Estereoisomerismo
14.
Chemistry ; 27(55): 13725-13729, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324754

RESUMEN

Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.


Asunto(s)
Biomimética , Hierro , Catálisis , Compuestos Ferrosos , Oxidación-Reducción
15.
Angew Chem Int Ed Engl ; 60(41): 22178-22183, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34318557

RESUMEN

Herein we disclose an iron-catalyzed cross-coupling reaction of propargyl ethers with Grignard reagents. The reaction was demonstrated to be stereospecific and allows for a facile preparation of optically active allenes via efficient chirality transfer. Various tri- and tetrasubstituted fluoroalkyl allenes can be obtained in good to excellent yields. In addition, an iron-catalyzed cross-coupling of Grignard reagents with α-alkynyl oxetanes and tetrahydrofurans is disclosed herein, which constitutes a straightforward approach towards fully substituted ß- or γ-allenols, respectively.

16.
ACS Catal ; 11(5): 2999-3008, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33842022

RESUMEN

A well-studied heterogeneous palladium(II) catalyst used for the cycloisomerization of acetylenic acids is known to be susceptible to deactivation through reduction. To gain a deeper understanding of this deactivation process and to enable the design of a reactivation strategy, in situ X-ray absorption spectroscopy (XAS) was used. With this technique, changes in the palladium oxidation state and coordination environment could be studied in close detail, which provided experimental evidence that the deactivation was primarily caused by triethylamine-promoted reduction of palladium(II) to metallic palladium nanoparticles. Furthermore, it was observed that the choice of the acetylenic acid substrate influenced the distribution between palladium(II) and palladium(0) species in the heterogeneous catalyst after the reaction. From the mechanistic insight gained through XAS, an improved catalytic protocol was developed that did not suffer from deactivation and allowed for more efficient recycling of the catalyst.

17.
Acc Chem Res ; 54(9): 2275-2286, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33871980

RESUMEN

Palladium-catalyzed oxidations involving cascade processes provide a versatile platform for streamlined conversion of simple feedstocks into functional molecules with high atom and step economy. However, the achievement of high palladium efficiency and selectivity in Pd-catalyzed oxidative cascade reactions is still challenging in many cases, as a result of the aggregation of active palladium species to Pd black and the possible side reactions during each bond-forming step. The two current solutions for addressing these issues are either to utilize oxidant-stable ligands or to use electron transfer mediators (ETMs). The former solution, which includes the use of amines, pyridines, sulfoxides, and carbene derivatives, inhibits aggregation of Pd0 during the catalytic cycle, while the latter solution facilitates reoxidation of Pd0 to PdII to improve the activity and selectivity. Following our long-standing interest in Pd-catalyzed oxidations, very recently we developed heterogeneous catalysts to resolve the issues mentioned above in oxidative cascade reactions. The heterogeneous palladium catalysts (Pd-AmP-MCF or Pd-AmP-CNC) comprise palladium nanoclusters (1-2 nm) immobilized on amino-functionalized siliceous mesocellular foam (MCF) or on crystalline nanocellulose (CNC), exhibiting high activity, selectivity as well as excellent recycling ability.In this Account, we will discuss the synthesis and characterizations of the heterogeneous palladium catalysts, as well as their catalytic behaviors, and the mechanisms involved in their reactions. An important aspect of these catalysts in oxidation reactions is the generation of active Pd(II) species within the heterogeneous phase. Typical oxidative cascade reactions of our recent research on this topic include oxidative carbocyclization-carbonylation, oxidative carbocyclization-borylation, oxidative alkynylation-cyclization, oxidative carbonylation-cyclization, and oxidative carbocyclization-alkynylation. These reactions provide access to important compounds attractive in medicinal chemistry and functional materials, such as γ-lactone/γ-lactam-based poly rings, cyclobutenols, highly substituted furans, and oxaboroles. During these processes, the heterogeneous catalysts exhibited much higher turnover numbers (TONs) than their homogeneous counterparts (e.g., Pd(OAc)2) as well as unique selectivity that cannot be achieved by homogeneous palladium catalysts. The origin of the high efficiency and unique selectivity of the heterogeneous catalysts was also investigated. Asymmetric syntheses for the construction of optically pure compounds were realized based on the excellent selectivity in these heterogeneous processes. Kinetic studies revealed that the rate and yield of the reactions were essentially maintained during recycling, which demonstrates that Pd-AmP-MCF and Pd-AmP-CNC are robust and highly active in these oxidative cascade reactions. In addition, inductively coupled plasma optical emisson spectroscopy (ICP-OES) analysis and hot filtration test suggest that these processes most likely proceed via a heterogeneous pathway.Recent progress in our group has shown that the activity of Pd-AmP-MCF and Pd-AmP-CNC could be improved even further by the addition of Ag+ to generate cationic Pd(II). Furthermore, intriguing solvent effects were observed in a Pd-AmP-MCF-catalyzed oxidative cascade process, and solvent-controlled chemoselective transformations were developed based on this property of the catalyst. The heterogeneous strategy of this Account provides solutions to palladium deactivation and selectivity issues in Pd(II)-catalyzed oxidative cascade reactions and enables efficient catalyst recycling, which will open up new opportunities in oxidative cascade reactions.

18.
Angew Chem Int Ed Engl ; 60(21): 11819-11823, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33725364

RESUMEN

Herein we report the first FeII -catalyzed aerobic biomimetic oxidation of amines. This oxidation reaction involves several electron transfer steps and is inspired by biological oxidation in the respiratory chain. The electron transfer from the amine to molecular oxygen is aided by two coupled catalytic redox systems, which lower the energy barrier and improve the selectivity of the oxidation reaction. An iron hydrogen transfer complex was utilized as the substrate-selective dehydrogenation catalyst along with a bifunctional hydroquinone/cobalt Schiff base complex as a hybrid electron transfer mediator. Various primary and secondary amines were oxidized in air to their corresponding aldimines or ketimines in good to excellent yield.


Asunto(s)
Aminas/química , Cobalto/química , Complejos de Coordinación/química , Hidroquinonas/química , Hierro/química , Biomimética , Catálisis , Iminas/síntesis química , Oxidación-Reducción , Oxígeno/química , Bases de Schiff/química
19.
Chem Rev ; 121(8): 4373-4505, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33739109

RESUMEN

This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.

20.
Angew Chem Int Ed Engl ; 60(29): 15686-15704, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33368909

RESUMEN

This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA