Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Energy Lett ; 9(9): 4378-4385, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39296965

RESUMEN

Halide perovskites are technologically interesting across a wide range of optoelectronic devices, especially photovoltaics, but material stability has proven to be challenging. One degradation mode of note is the meta stability of the perovskite phase of some material compositions. This was studied by tracking the change of CsPbI3 from its optoelectronically relevant perovskite phase to its thermodynamically stable nonperovskite phase, δ-CsPbI3. We explore kinetics as a function of surface chemistry and observe a quantitatively similar, ∼5-fold, reduction in the phase transition rate between neat films and those treated with CsI and CdI2. Using XPS to explore surface chemistry changes across samples, we link the reduction in the phase transition rate to the surface iodide concentration. When informed by previous theoretical studies, these experiments point to surface iodide vacancies as the nucleation sites for δ-CsPbI3 growth and show that phase nucleation is the rate limiting step in δ-CsPbI3 formation for CsPbI3 perovskite thin films.

2.
Small Methods ; 8(1): e2300901, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37800986

RESUMEN

Improving the stability of lead halide perovskite solar cells (PSCs) for industrialization is currently a major challenge. It is shown that moisture induces changes in global PSC performance, altering the nature of the absorber through phase transition or segregation. Understanding how the material evolves in a wet environment is crucial for optimizing device performance and stability. Here, the chemical and structural evolution of state-of-the-art hybrid perovskite thin-film Cs0.05 (MA0.15 FA0.85 )0.95 Pb(I0.84 Br0.16 )3 (CsMAFA) is investigated after aging under controlled humidity with analytical characterization techniques. The analysis is performed at different scales through Photoluminescence, X-ray Diffraction Spectroscopy, Cathodoluminescence, Selected Area Electron Diffraction, and Energy Dispersive X-ray Spectroscopy. From the analysis of the degradation products from the perovskite layer and by the correlation of their optical and chemical properties at a microscopic level, different phases such as lead-iodide (PbI2 ), inorganic mixed halide CsPb(I0.9 Br0.1 )3 and lead-rich CsPb2 (I0.74 Br0.26 )5 perovskite are evidenced. These phases demonstrate a high degree of crystallinity that induces unique geometrical shapes and drastically affects the optoelectronic properties of the thin film. By identifying the precise nature of these specific species, the multi-scale approach provides insights into the degradation mechanisms of hybrid perovskite materials, which can be used to improve PSC stability.

3.
Opt Express ; 16(16): 11718-26, 2008 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-18679441

RESUMEN

The use of laser optical feedback Imaging (LOFI) for scattering-type scanning near-field optical microscopy (sSNOM) is proposed and investigated. We implement this sensitive imaging method by combining a sSNOM with optical heterodyne interferometry and the dynamic properties of a B class laser source which is here used both as source and detector. Compared with previous near field optical heterodyne experiments, this detection scheme provides an optical amplification that is several orders of magnitude higher, while keeping a low noise phase-sensitive detection. Successful demonstration of this complex field imaging technique is done on Silicon on Insulator (SOI) optical waveguides revealing phase singularities and directional leakage.


Asunto(s)
Interferometría/instrumentación , Microscopía de Contraste de Fase/instrumentación , Microscopía de Sonda de Barrido/instrumentación , Óptica y Fotónica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA